Step |
Hyp |
Ref |
Expression |
1 |
|
cply1binom.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
cply1binom.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
3 |
|
cply1binom.a |
⊢ + = ( +g ‘ 𝑃 ) |
4 |
|
cply1binom.m |
⊢ × = ( .r ‘ 𝑃 ) |
5 |
|
cply1binom.t |
⊢ · = ( .g ‘ 𝑃 ) |
6 |
|
cply1binom.g |
⊢ 𝐺 = ( mulGrp ‘ 𝑃 ) |
7 |
|
cply1binom.e |
⊢ ↑ = ( .g ‘ 𝐺 ) |
8 |
|
lply1binomsc.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
9 |
|
lply1binomsc.s |
⊢ 𝑆 = ( algSc ‘ 𝑃 ) |
10 |
|
lply1binomsc.h |
⊢ 𝐻 = ( mulGrp ‘ 𝑅 ) |
11 |
|
lply1binomsc.e |
⊢ 𝐸 = ( .g ‘ 𝐻 ) |
12 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
13 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
14 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
15 |
13 14
|
syl |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ Ring ) |
16 |
15
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝑃 ∈ Ring ) |
17 |
1
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
18 |
13 17
|
syl |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ LMod ) |
19 |
18
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝑃 ∈ LMod ) |
20 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
21 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
22 |
9 12 16 19 20 21
|
asclf |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝑆 : ( Base ‘ ( Scalar ‘ 𝑃 ) ) ⟶ ( Base ‘ 𝑃 ) ) |
23 |
1
|
ply1sca |
⊢ ( 𝑅 ∈ CRing → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
24 |
23
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
25 |
24
|
fveq2d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
26 |
8 25
|
eqtrid |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
27 |
26
|
feq2d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → ( 𝑆 : 𝐾 ⟶ ( Base ‘ 𝑃 ) ↔ 𝑆 : ( Base ‘ ( Scalar ‘ 𝑃 ) ) ⟶ ( Base ‘ 𝑃 ) ) ) |
28 |
22 27
|
mpbird |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝑆 : 𝐾 ⟶ ( Base ‘ 𝑃 ) ) |
29 |
|
simp3 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝐴 ∈ 𝐾 ) |
30 |
28 29
|
ffvelrnd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → ( 𝑆 ‘ 𝐴 ) ∈ ( Base ‘ 𝑃 ) ) |
31 |
1 2 3 4 5 6 7 21
|
lply1binom |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ ( 𝑆 ‘ 𝐴 ) ∈ ( Base ‘ 𝑃 ) ) → ( 𝑁 ↑ ( 𝑋 + ( 𝑆 ‘ 𝐴 ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑁 C 𝑘 ) · ( ( ( 𝑁 − 𝑘 ) ↑ ( 𝑆 ‘ 𝐴 ) ) × ( 𝑘 ↑ 𝑋 ) ) ) ) ) ) |
32 |
30 31
|
syld3an3 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → ( 𝑁 ↑ ( 𝑋 + ( 𝑆 ‘ 𝐴 ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑁 C 𝑘 ) · ( ( ( 𝑁 − 𝑘 ) ↑ ( 𝑆 ‘ 𝐴 ) ) × ( 𝑘 ↑ 𝑋 ) ) ) ) ) ) |
33 |
1
|
ply1assa |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ AssAlg ) |
34 |
33
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝑃 ∈ AssAlg ) |
35 |
34
|
adantr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑃 ∈ AssAlg ) |
36 |
|
fznn0sub |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → ( 𝑁 − 𝑘 ) ∈ ℕ0 ) |
37 |
36
|
adantl |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑁 − 𝑘 ) ∈ ℕ0 ) |
38 |
23
|
fveq2d |
⊢ ( 𝑅 ∈ CRing → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
39 |
8 38
|
eqtrid |
⊢ ( 𝑅 ∈ CRing → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
40 |
39
|
eleq2d |
⊢ ( 𝑅 ∈ CRing → ( 𝐴 ∈ 𝐾 ↔ 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ) |
41 |
40
|
biimpa |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾 ) → 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
42 |
41
|
3adant2 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
43 |
42
|
adantr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
44 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
45 |
21 44
|
ringidcl |
⊢ ( 𝑃 ∈ Ring → ( 1r ‘ 𝑃 ) ∈ ( Base ‘ 𝑃 ) ) |
46 |
15 45
|
syl |
⊢ ( 𝑅 ∈ CRing → ( 1r ‘ 𝑃 ) ∈ ( Base ‘ 𝑃 ) ) |
47 |
46
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → ( 1r ‘ 𝑃 ) ∈ ( Base ‘ 𝑃 ) ) |
48 |
47
|
adantr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 1r ‘ 𝑃 ) ∈ ( Base ‘ 𝑃 ) ) |
49 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
50 |
|
eqid |
⊢ ( mulGrp ‘ ( Scalar ‘ 𝑃 ) ) = ( mulGrp ‘ ( Scalar ‘ 𝑃 ) ) |
51 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ( Scalar ‘ 𝑃 ) ) ) = ( .g ‘ ( mulGrp ‘ ( Scalar ‘ 𝑃 ) ) ) |
52 |
21 12 20 49 50 51 6 7
|
assamulgscm |
⊢ ( ( 𝑃 ∈ AssAlg ∧ ( ( 𝑁 − 𝑘 ) ∈ ℕ0 ∧ 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 1r ‘ 𝑃 ) ∈ ( Base ‘ 𝑃 ) ) ) → ( ( 𝑁 − 𝑘 ) ↑ ( 𝐴 ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) = ( ( ( 𝑁 − 𝑘 ) ( .g ‘ ( mulGrp ‘ ( Scalar ‘ 𝑃 ) ) ) 𝐴 ) ( ·𝑠 ‘ 𝑃 ) ( ( 𝑁 − 𝑘 ) ↑ ( 1r ‘ 𝑃 ) ) ) ) |
53 |
35 37 43 48 52
|
syl13anc |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑁 − 𝑘 ) ↑ ( 𝐴 ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) = ( ( ( 𝑁 − 𝑘 ) ( .g ‘ ( mulGrp ‘ ( Scalar ‘ 𝑃 ) ) ) 𝐴 ) ( ·𝑠 ‘ 𝑃 ) ( ( 𝑁 − 𝑘 ) ↑ ( 1r ‘ 𝑃 ) ) ) ) |
54 |
23
|
fveq2d |
⊢ ( 𝑅 ∈ CRing → ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ ( Scalar ‘ 𝑃 ) ) ) |
55 |
10 54
|
eqtrid |
⊢ ( 𝑅 ∈ CRing → 𝐻 = ( mulGrp ‘ ( Scalar ‘ 𝑃 ) ) ) |
56 |
55
|
fveq2d |
⊢ ( 𝑅 ∈ CRing → ( .g ‘ 𝐻 ) = ( .g ‘ ( mulGrp ‘ ( Scalar ‘ 𝑃 ) ) ) ) |
57 |
11 56
|
eqtrid |
⊢ ( 𝑅 ∈ CRing → 𝐸 = ( .g ‘ ( mulGrp ‘ ( Scalar ‘ 𝑃 ) ) ) ) |
58 |
57
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝐸 = ( .g ‘ ( mulGrp ‘ ( Scalar ‘ 𝑃 ) ) ) ) |
59 |
58
|
adantr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝐸 = ( .g ‘ ( mulGrp ‘ ( Scalar ‘ 𝑃 ) ) ) ) |
60 |
59
|
eqcomd |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( .g ‘ ( mulGrp ‘ ( Scalar ‘ 𝑃 ) ) ) = 𝐸 ) |
61 |
60
|
oveqd |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑁 − 𝑘 ) ( .g ‘ ( mulGrp ‘ ( Scalar ‘ 𝑃 ) ) ) 𝐴 ) = ( ( 𝑁 − 𝑘 ) 𝐸 𝐴 ) ) |
62 |
6
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → 𝐺 ∈ Mnd ) |
63 |
15 62
|
syl |
⊢ ( 𝑅 ∈ CRing → 𝐺 ∈ Mnd ) |
64 |
63
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝐺 ∈ Mnd ) |
65 |
6 21
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝐺 ) |
66 |
6 44
|
ringidval |
⊢ ( 1r ‘ 𝑃 ) = ( 0g ‘ 𝐺 ) |
67 |
65 7 66
|
mulgnn0z |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑁 − 𝑘 ) ∈ ℕ0 ) → ( ( 𝑁 − 𝑘 ) ↑ ( 1r ‘ 𝑃 ) ) = ( 1r ‘ 𝑃 ) ) |
68 |
64 36 67
|
syl2an |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑁 − 𝑘 ) ↑ ( 1r ‘ 𝑃 ) ) = ( 1r ‘ 𝑃 ) ) |
69 |
61 68
|
oveq12d |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝑁 − 𝑘 ) ( .g ‘ ( mulGrp ‘ ( Scalar ‘ 𝑃 ) ) ) 𝐴 ) ( ·𝑠 ‘ 𝑃 ) ( ( 𝑁 − 𝑘 ) ↑ ( 1r ‘ 𝑃 ) ) ) = ( ( ( 𝑁 − 𝑘 ) 𝐸 𝐴 ) ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) |
70 |
53 69
|
eqtrd |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑁 − 𝑘 ) ↑ ( 𝐴 ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) = ( ( ( 𝑁 − 𝑘 ) 𝐸 𝐴 ) ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) |
71 |
9 12 20 49 44
|
asclval |
⊢ ( 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) → ( 𝑆 ‘ 𝐴 ) = ( 𝐴 ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) |
72 |
43 71
|
syl |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑆 ‘ 𝐴 ) = ( 𝐴 ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) |
73 |
72
|
oveq2d |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑁 − 𝑘 ) ↑ ( 𝑆 ‘ 𝐴 ) ) = ( ( 𝑁 − 𝑘 ) ↑ ( 𝐴 ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) ) |
74 |
10
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → 𝐻 ∈ Mnd ) |
75 |
13 74
|
syl |
⊢ ( 𝑅 ∈ CRing → 𝐻 ∈ Mnd ) |
76 |
75
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝐻 ∈ Mnd ) |
77 |
76
|
adantr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝐻 ∈ Mnd ) |
78 |
|
simpr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾 ) → 𝐴 ∈ 𝐾 ) |
79 |
10 8
|
mgpbas |
⊢ 𝐾 = ( Base ‘ 𝐻 ) |
80 |
78 79
|
eleqtrdi |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾 ) → 𝐴 ∈ ( Base ‘ 𝐻 ) ) |
81 |
80
|
3adant2 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝐴 ∈ ( Base ‘ 𝐻 ) ) |
82 |
81
|
adantr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝐴 ∈ ( Base ‘ 𝐻 ) ) |
83 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
84 |
83 11
|
mulgnn0cl |
⊢ ( ( 𝐻 ∈ Mnd ∧ ( 𝑁 − 𝑘 ) ∈ ℕ0 ∧ 𝐴 ∈ ( Base ‘ 𝐻 ) ) → ( ( 𝑁 − 𝑘 ) 𝐸 𝐴 ) ∈ ( Base ‘ 𝐻 ) ) |
85 |
77 37 82 84
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑁 − 𝑘 ) 𝐸 𝐴 ) ∈ ( Base ‘ 𝐻 ) ) |
86 |
24
|
adantr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
87 |
86
|
eqcomd |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( Scalar ‘ 𝑃 ) = 𝑅 ) |
88 |
87
|
fveq2d |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ 𝑅 ) ) |
89 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
90 |
10 89
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝐻 ) |
91 |
88 90
|
eqtrdi |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ 𝐻 ) ) |
92 |
85 91
|
eleqtrrd |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑁 − 𝑘 ) 𝐸 𝐴 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
93 |
9 12 20 49 44
|
asclval |
⊢ ( ( ( 𝑁 − 𝑘 ) 𝐸 𝐴 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) → ( 𝑆 ‘ ( ( 𝑁 − 𝑘 ) 𝐸 𝐴 ) ) = ( ( ( 𝑁 − 𝑘 ) 𝐸 𝐴 ) ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) |
94 |
92 93
|
syl |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑆 ‘ ( ( 𝑁 − 𝑘 ) 𝐸 𝐴 ) ) = ( ( ( 𝑁 − 𝑘 ) 𝐸 𝐴 ) ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) |
95 |
70 73 94
|
3eqtr4d |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑁 − 𝑘 ) ↑ ( 𝑆 ‘ 𝐴 ) ) = ( 𝑆 ‘ ( ( 𝑁 − 𝑘 ) 𝐸 𝐴 ) ) ) |
96 |
95
|
oveq1d |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝑁 − 𝑘 ) ↑ ( 𝑆 ‘ 𝐴 ) ) × ( 𝑘 ↑ 𝑋 ) ) = ( ( 𝑆 ‘ ( ( 𝑁 − 𝑘 ) 𝐸 𝐴 ) ) × ( 𝑘 ↑ 𝑋 ) ) ) |
97 |
96
|
oveq2d |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑁 C 𝑘 ) · ( ( ( 𝑁 − 𝑘 ) ↑ ( 𝑆 ‘ 𝐴 ) ) × ( 𝑘 ↑ 𝑋 ) ) ) = ( ( 𝑁 C 𝑘 ) · ( ( 𝑆 ‘ ( ( 𝑁 − 𝑘 ) 𝐸 𝐴 ) ) × ( 𝑘 ↑ 𝑋 ) ) ) ) |
98 |
97
|
mpteq2dva |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑁 C 𝑘 ) · ( ( ( 𝑁 − 𝑘 ) ↑ ( 𝑆 ‘ 𝐴 ) ) × ( 𝑘 ↑ 𝑋 ) ) ) ) = ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑁 C 𝑘 ) · ( ( 𝑆 ‘ ( ( 𝑁 − 𝑘 ) 𝐸 𝐴 ) ) × ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
99 |
98
|
oveq2d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑁 C 𝑘 ) · ( ( ( 𝑁 − 𝑘 ) ↑ ( 𝑆 ‘ 𝐴 ) ) × ( 𝑘 ↑ 𝑋 ) ) ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑁 C 𝑘 ) · ( ( 𝑆 ‘ ( ( 𝑁 − 𝑘 ) 𝐸 𝐴 ) ) × ( 𝑘 ↑ 𝑋 ) ) ) ) ) ) |
100 |
32 99
|
eqtrd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → ( 𝑁 ↑ ( 𝑋 + ( 𝑆 ‘ 𝐴 ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑁 C 𝑘 ) · ( ( 𝑆 ‘ ( ( 𝑁 − 𝑘 ) 𝐸 𝐴 ) ) × ( 𝑘 ↑ 𝑋 ) ) ) ) ) ) |