Step |
Hyp |
Ref |
Expression |
1 |
|
cply1binom.p |
|- P = ( Poly1 ` R ) |
2 |
|
cply1binom.x |
|- X = ( var1 ` R ) |
3 |
|
cply1binom.a |
|- .+ = ( +g ` P ) |
4 |
|
cply1binom.m |
|- .X. = ( .r ` P ) |
5 |
|
cply1binom.t |
|- .x. = ( .g ` P ) |
6 |
|
cply1binom.g |
|- G = ( mulGrp ` P ) |
7 |
|
cply1binom.e |
|- .^ = ( .g ` G ) |
8 |
|
lply1binomsc.k |
|- K = ( Base ` R ) |
9 |
|
lply1binomsc.s |
|- S = ( algSc ` P ) |
10 |
|
lply1binomsc.h |
|- H = ( mulGrp ` R ) |
11 |
|
lply1binomsc.e |
|- E = ( .g ` H ) |
12 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
13 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
14 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
15 |
13 14
|
syl |
|- ( R e. CRing -> P e. Ring ) |
16 |
15
|
3ad2ant1 |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> P e. Ring ) |
17 |
1
|
ply1lmod |
|- ( R e. Ring -> P e. LMod ) |
18 |
13 17
|
syl |
|- ( R e. CRing -> P e. LMod ) |
19 |
18
|
3ad2ant1 |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> P e. LMod ) |
20 |
|
eqid |
|- ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) |
21 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
22 |
9 12 16 19 20 21
|
asclf |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> S : ( Base ` ( Scalar ` P ) ) --> ( Base ` P ) ) |
23 |
1
|
ply1sca |
|- ( R e. CRing -> R = ( Scalar ` P ) ) |
24 |
23
|
3ad2ant1 |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> R = ( Scalar ` P ) ) |
25 |
24
|
fveq2d |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) |
26 |
8 25
|
eqtrid |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> K = ( Base ` ( Scalar ` P ) ) ) |
27 |
26
|
feq2d |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> ( S : K --> ( Base ` P ) <-> S : ( Base ` ( Scalar ` P ) ) --> ( Base ` P ) ) ) |
28 |
22 27
|
mpbird |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> S : K --> ( Base ` P ) ) |
29 |
|
simp3 |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> A e. K ) |
30 |
28 29
|
ffvelrnd |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> ( S ` A ) e. ( Base ` P ) ) |
31 |
1 2 3 4 5 6 7 21
|
lply1binom |
|- ( ( R e. CRing /\ N e. NN0 /\ ( S ` A ) e. ( Base ` P ) ) -> ( N .^ ( X .+ ( S ` A ) ) ) = ( P gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ ( S ` A ) ) .X. ( k .^ X ) ) ) ) ) ) |
32 |
30 31
|
syld3an3 |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> ( N .^ ( X .+ ( S ` A ) ) ) = ( P gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ ( S ` A ) ) .X. ( k .^ X ) ) ) ) ) ) |
33 |
1
|
ply1assa |
|- ( R e. CRing -> P e. AssAlg ) |
34 |
33
|
3ad2ant1 |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> P e. AssAlg ) |
35 |
34
|
adantr |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> P e. AssAlg ) |
36 |
|
fznn0sub |
|- ( k e. ( 0 ... N ) -> ( N - k ) e. NN0 ) |
37 |
36
|
adantl |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( N - k ) e. NN0 ) |
38 |
23
|
fveq2d |
|- ( R e. CRing -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) |
39 |
8 38
|
eqtrid |
|- ( R e. CRing -> K = ( Base ` ( Scalar ` P ) ) ) |
40 |
39
|
eleq2d |
|- ( R e. CRing -> ( A e. K <-> A e. ( Base ` ( Scalar ` P ) ) ) ) |
41 |
40
|
biimpa |
|- ( ( R e. CRing /\ A e. K ) -> A e. ( Base ` ( Scalar ` P ) ) ) |
42 |
41
|
3adant2 |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> A e. ( Base ` ( Scalar ` P ) ) ) |
43 |
42
|
adantr |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> A e. ( Base ` ( Scalar ` P ) ) ) |
44 |
|
eqid |
|- ( 1r ` P ) = ( 1r ` P ) |
45 |
21 44
|
ringidcl |
|- ( P e. Ring -> ( 1r ` P ) e. ( Base ` P ) ) |
46 |
15 45
|
syl |
|- ( R e. CRing -> ( 1r ` P ) e. ( Base ` P ) ) |
47 |
46
|
3ad2ant1 |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> ( 1r ` P ) e. ( Base ` P ) ) |
48 |
47
|
adantr |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( 1r ` P ) e. ( Base ` P ) ) |
49 |
|
eqid |
|- ( .s ` P ) = ( .s ` P ) |
50 |
|
eqid |
|- ( mulGrp ` ( Scalar ` P ) ) = ( mulGrp ` ( Scalar ` P ) ) |
51 |
|
eqid |
|- ( .g ` ( mulGrp ` ( Scalar ` P ) ) ) = ( .g ` ( mulGrp ` ( Scalar ` P ) ) ) |
52 |
21 12 20 49 50 51 6 7
|
assamulgscm |
|- ( ( P e. AssAlg /\ ( ( N - k ) e. NN0 /\ A e. ( Base ` ( Scalar ` P ) ) /\ ( 1r ` P ) e. ( Base ` P ) ) ) -> ( ( N - k ) .^ ( A ( .s ` P ) ( 1r ` P ) ) ) = ( ( ( N - k ) ( .g ` ( mulGrp ` ( Scalar ` P ) ) ) A ) ( .s ` P ) ( ( N - k ) .^ ( 1r ` P ) ) ) ) |
53 |
35 37 43 48 52
|
syl13anc |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( ( N - k ) .^ ( A ( .s ` P ) ( 1r ` P ) ) ) = ( ( ( N - k ) ( .g ` ( mulGrp ` ( Scalar ` P ) ) ) A ) ( .s ` P ) ( ( N - k ) .^ ( 1r ` P ) ) ) ) |
54 |
23
|
fveq2d |
|- ( R e. CRing -> ( mulGrp ` R ) = ( mulGrp ` ( Scalar ` P ) ) ) |
55 |
10 54
|
eqtrid |
|- ( R e. CRing -> H = ( mulGrp ` ( Scalar ` P ) ) ) |
56 |
55
|
fveq2d |
|- ( R e. CRing -> ( .g ` H ) = ( .g ` ( mulGrp ` ( Scalar ` P ) ) ) ) |
57 |
11 56
|
eqtrid |
|- ( R e. CRing -> E = ( .g ` ( mulGrp ` ( Scalar ` P ) ) ) ) |
58 |
57
|
3ad2ant1 |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> E = ( .g ` ( mulGrp ` ( Scalar ` P ) ) ) ) |
59 |
58
|
adantr |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> E = ( .g ` ( mulGrp ` ( Scalar ` P ) ) ) ) |
60 |
59
|
eqcomd |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( .g ` ( mulGrp ` ( Scalar ` P ) ) ) = E ) |
61 |
60
|
oveqd |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( ( N - k ) ( .g ` ( mulGrp ` ( Scalar ` P ) ) ) A ) = ( ( N - k ) E A ) ) |
62 |
6
|
ringmgp |
|- ( P e. Ring -> G e. Mnd ) |
63 |
15 62
|
syl |
|- ( R e. CRing -> G e. Mnd ) |
64 |
63
|
3ad2ant1 |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> G e. Mnd ) |
65 |
6 21
|
mgpbas |
|- ( Base ` P ) = ( Base ` G ) |
66 |
6 44
|
ringidval |
|- ( 1r ` P ) = ( 0g ` G ) |
67 |
65 7 66
|
mulgnn0z |
|- ( ( G e. Mnd /\ ( N - k ) e. NN0 ) -> ( ( N - k ) .^ ( 1r ` P ) ) = ( 1r ` P ) ) |
68 |
64 36 67
|
syl2an |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( ( N - k ) .^ ( 1r ` P ) ) = ( 1r ` P ) ) |
69 |
61 68
|
oveq12d |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( ( ( N - k ) ( .g ` ( mulGrp ` ( Scalar ` P ) ) ) A ) ( .s ` P ) ( ( N - k ) .^ ( 1r ` P ) ) ) = ( ( ( N - k ) E A ) ( .s ` P ) ( 1r ` P ) ) ) |
70 |
53 69
|
eqtrd |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( ( N - k ) .^ ( A ( .s ` P ) ( 1r ` P ) ) ) = ( ( ( N - k ) E A ) ( .s ` P ) ( 1r ` P ) ) ) |
71 |
9 12 20 49 44
|
asclval |
|- ( A e. ( Base ` ( Scalar ` P ) ) -> ( S ` A ) = ( A ( .s ` P ) ( 1r ` P ) ) ) |
72 |
43 71
|
syl |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( S ` A ) = ( A ( .s ` P ) ( 1r ` P ) ) ) |
73 |
72
|
oveq2d |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( ( N - k ) .^ ( S ` A ) ) = ( ( N - k ) .^ ( A ( .s ` P ) ( 1r ` P ) ) ) ) |
74 |
10
|
ringmgp |
|- ( R e. Ring -> H e. Mnd ) |
75 |
13 74
|
syl |
|- ( R e. CRing -> H e. Mnd ) |
76 |
75
|
3ad2ant1 |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> H e. Mnd ) |
77 |
76
|
adantr |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> H e. Mnd ) |
78 |
|
simpr |
|- ( ( R e. CRing /\ A e. K ) -> A e. K ) |
79 |
10 8
|
mgpbas |
|- K = ( Base ` H ) |
80 |
78 79
|
eleqtrdi |
|- ( ( R e. CRing /\ A e. K ) -> A e. ( Base ` H ) ) |
81 |
80
|
3adant2 |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> A e. ( Base ` H ) ) |
82 |
81
|
adantr |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> A e. ( Base ` H ) ) |
83 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
84 |
83 11
|
mulgnn0cl |
|- ( ( H e. Mnd /\ ( N - k ) e. NN0 /\ A e. ( Base ` H ) ) -> ( ( N - k ) E A ) e. ( Base ` H ) ) |
85 |
77 37 82 84
|
syl3anc |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( ( N - k ) E A ) e. ( Base ` H ) ) |
86 |
24
|
adantr |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> R = ( Scalar ` P ) ) |
87 |
86
|
eqcomd |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( Scalar ` P ) = R ) |
88 |
87
|
fveq2d |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( Base ` ( Scalar ` P ) ) = ( Base ` R ) ) |
89 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
90 |
10 89
|
mgpbas |
|- ( Base ` R ) = ( Base ` H ) |
91 |
88 90
|
eqtrdi |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( Base ` ( Scalar ` P ) ) = ( Base ` H ) ) |
92 |
85 91
|
eleqtrrd |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( ( N - k ) E A ) e. ( Base ` ( Scalar ` P ) ) ) |
93 |
9 12 20 49 44
|
asclval |
|- ( ( ( N - k ) E A ) e. ( Base ` ( Scalar ` P ) ) -> ( S ` ( ( N - k ) E A ) ) = ( ( ( N - k ) E A ) ( .s ` P ) ( 1r ` P ) ) ) |
94 |
92 93
|
syl |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( S ` ( ( N - k ) E A ) ) = ( ( ( N - k ) E A ) ( .s ` P ) ( 1r ` P ) ) ) |
95 |
70 73 94
|
3eqtr4d |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( ( N - k ) .^ ( S ` A ) ) = ( S ` ( ( N - k ) E A ) ) ) |
96 |
95
|
oveq1d |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( ( ( N - k ) .^ ( S ` A ) ) .X. ( k .^ X ) ) = ( ( S ` ( ( N - k ) E A ) ) .X. ( k .^ X ) ) ) |
97 |
96
|
oveq2d |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( ( N _C k ) .x. ( ( ( N - k ) .^ ( S ` A ) ) .X. ( k .^ X ) ) ) = ( ( N _C k ) .x. ( ( S ` ( ( N - k ) E A ) ) .X. ( k .^ X ) ) ) ) |
98 |
97
|
mpteq2dva |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ ( S ` A ) ) .X. ( k .^ X ) ) ) ) = ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( S ` ( ( N - k ) E A ) ) .X. ( k .^ X ) ) ) ) ) |
99 |
98
|
oveq2d |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> ( P gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ ( S ` A ) ) .X. ( k .^ X ) ) ) ) ) = ( P gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( S ` ( ( N - k ) E A ) ) .X. ( k .^ X ) ) ) ) ) ) |
100 |
32 99
|
eqtrd |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> ( N .^ ( X .+ ( S ` A ) ) ) = ( P gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( S ` ( ( N - k ) E A ) ) .X. ( k .^ X ) ) ) ) ) ) |