| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cply1binom.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
cply1binom.x |
|- X = ( var1 ` R ) |
| 3 |
|
cply1binom.a |
|- .+ = ( +g ` P ) |
| 4 |
|
cply1binom.m |
|- .X. = ( .r ` P ) |
| 5 |
|
cply1binom.t |
|- .x. = ( .g ` P ) |
| 6 |
|
cply1binom.g |
|- G = ( mulGrp ` P ) |
| 7 |
|
cply1binom.e |
|- .^ = ( .g ` G ) |
| 8 |
|
lply1binomsc.k |
|- K = ( Base ` R ) |
| 9 |
|
lply1binomsc.s |
|- S = ( algSc ` P ) |
| 10 |
|
lply1binomsc.h |
|- H = ( mulGrp ` R ) |
| 11 |
|
lply1binomsc.e |
|- E = ( .g ` H ) |
| 12 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
| 13 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
| 14 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
| 15 |
13 14
|
syl |
|- ( R e. CRing -> P e. Ring ) |
| 16 |
15
|
3ad2ant1 |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> P e. Ring ) |
| 17 |
1
|
ply1lmod |
|- ( R e. Ring -> P e. LMod ) |
| 18 |
13 17
|
syl |
|- ( R e. CRing -> P e. LMod ) |
| 19 |
18
|
3ad2ant1 |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> P e. LMod ) |
| 20 |
|
eqid |
|- ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) |
| 21 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 22 |
9 12 16 19 20 21
|
asclf |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> S : ( Base ` ( Scalar ` P ) ) --> ( Base ` P ) ) |
| 23 |
1
|
ply1sca |
|- ( R e. CRing -> R = ( Scalar ` P ) ) |
| 24 |
23
|
3ad2ant1 |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> R = ( Scalar ` P ) ) |
| 25 |
24
|
fveq2d |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) |
| 26 |
8 25
|
eqtrid |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> K = ( Base ` ( Scalar ` P ) ) ) |
| 27 |
26
|
feq2d |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> ( S : K --> ( Base ` P ) <-> S : ( Base ` ( Scalar ` P ) ) --> ( Base ` P ) ) ) |
| 28 |
22 27
|
mpbird |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> S : K --> ( Base ` P ) ) |
| 29 |
|
simp3 |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> A e. K ) |
| 30 |
28 29
|
ffvelcdmd |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> ( S ` A ) e. ( Base ` P ) ) |
| 31 |
1 2 3 4 5 6 7 21
|
lply1binom |
|- ( ( R e. CRing /\ N e. NN0 /\ ( S ` A ) e. ( Base ` P ) ) -> ( N .^ ( X .+ ( S ` A ) ) ) = ( P gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ ( S ` A ) ) .X. ( k .^ X ) ) ) ) ) ) |
| 32 |
30 31
|
syld3an3 |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> ( N .^ ( X .+ ( S ` A ) ) ) = ( P gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ ( S ` A ) ) .X. ( k .^ X ) ) ) ) ) ) |
| 33 |
1
|
ply1assa |
|- ( R e. CRing -> P e. AssAlg ) |
| 34 |
33
|
3ad2ant1 |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> P e. AssAlg ) |
| 35 |
34
|
adantr |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> P e. AssAlg ) |
| 36 |
|
fznn0sub |
|- ( k e. ( 0 ... N ) -> ( N - k ) e. NN0 ) |
| 37 |
36
|
adantl |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( N - k ) e. NN0 ) |
| 38 |
23
|
fveq2d |
|- ( R e. CRing -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) |
| 39 |
8 38
|
eqtrid |
|- ( R e. CRing -> K = ( Base ` ( Scalar ` P ) ) ) |
| 40 |
39
|
eleq2d |
|- ( R e. CRing -> ( A e. K <-> A e. ( Base ` ( Scalar ` P ) ) ) ) |
| 41 |
40
|
biimpa |
|- ( ( R e. CRing /\ A e. K ) -> A e. ( Base ` ( Scalar ` P ) ) ) |
| 42 |
41
|
3adant2 |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> A e. ( Base ` ( Scalar ` P ) ) ) |
| 43 |
42
|
adantr |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> A e. ( Base ` ( Scalar ` P ) ) ) |
| 44 |
|
eqid |
|- ( 1r ` P ) = ( 1r ` P ) |
| 45 |
21 44
|
ringidcl |
|- ( P e. Ring -> ( 1r ` P ) e. ( Base ` P ) ) |
| 46 |
15 45
|
syl |
|- ( R e. CRing -> ( 1r ` P ) e. ( Base ` P ) ) |
| 47 |
46
|
3ad2ant1 |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> ( 1r ` P ) e. ( Base ` P ) ) |
| 48 |
47
|
adantr |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( 1r ` P ) e. ( Base ` P ) ) |
| 49 |
|
eqid |
|- ( .s ` P ) = ( .s ` P ) |
| 50 |
|
eqid |
|- ( mulGrp ` ( Scalar ` P ) ) = ( mulGrp ` ( Scalar ` P ) ) |
| 51 |
|
eqid |
|- ( .g ` ( mulGrp ` ( Scalar ` P ) ) ) = ( .g ` ( mulGrp ` ( Scalar ` P ) ) ) |
| 52 |
21 12 20 49 50 51 6 7
|
assamulgscm |
|- ( ( P e. AssAlg /\ ( ( N - k ) e. NN0 /\ A e. ( Base ` ( Scalar ` P ) ) /\ ( 1r ` P ) e. ( Base ` P ) ) ) -> ( ( N - k ) .^ ( A ( .s ` P ) ( 1r ` P ) ) ) = ( ( ( N - k ) ( .g ` ( mulGrp ` ( Scalar ` P ) ) ) A ) ( .s ` P ) ( ( N - k ) .^ ( 1r ` P ) ) ) ) |
| 53 |
35 37 43 48 52
|
syl13anc |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( ( N - k ) .^ ( A ( .s ` P ) ( 1r ` P ) ) ) = ( ( ( N - k ) ( .g ` ( mulGrp ` ( Scalar ` P ) ) ) A ) ( .s ` P ) ( ( N - k ) .^ ( 1r ` P ) ) ) ) |
| 54 |
23
|
fveq2d |
|- ( R e. CRing -> ( mulGrp ` R ) = ( mulGrp ` ( Scalar ` P ) ) ) |
| 55 |
10 54
|
eqtrid |
|- ( R e. CRing -> H = ( mulGrp ` ( Scalar ` P ) ) ) |
| 56 |
55
|
fveq2d |
|- ( R e. CRing -> ( .g ` H ) = ( .g ` ( mulGrp ` ( Scalar ` P ) ) ) ) |
| 57 |
11 56
|
eqtrid |
|- ( R e. CRing -> E = ( .g ` ( mulGrp ` ( Scalar ` P ) ) ) ) |
| 58 |
57
|
3ad2ant1 |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> E = ( .g ` ( mulGrp ` ( Scalar ` P ) ) ) ) |
| 59 |
58
|
adantr |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> E = ( .g ` ( mulGrp ` ( Scalar ` P ) ) ) ) |
| 60 |
59
|
eqcomd |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( .g ` ( mulGrp ` ( Scalar ` P ) ) ) = E ) |
| 61 |
60
|
oveqd |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( ( N - k ) ( .g ` ( mulGrp ` ( Scalar ` P ) ) ) A ) = ( ( N - k ) E A ) ) |
| 62 |
6
|
ringmgp |
|- ( P e. Ring -> G e. Mnd ) |
| 63 |
15 62
|
syl |
|- ( R e. CRing -> G e. Mnd ) |
| 64 |
63
|
3ad2ant1 |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> G e. Mnd ) |
| 65 |
6 21
|
mgpbas |
|- ( Base ` P ) = ( Base ` G ) |
| 66 |
6 44
|
ringidval |
|- ( 1r ` P ) = ( 0g ` G ) |
| 67 |
65 7 66
|
mulgnn0z |
|- ( ( G e. Mnd /\ ( N - k ) e. NN0 ) -> ( ( N - k ) .^ ( 1r ` P ) ) = ( 1r ` P ) ) |
| 68 |
64 36 67
|
syl2an |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( ( N - k ) .^ ( 1r ` P ) ) = ( 1r ` P ) ) |
| 69 |
61 68
|
oveq12d |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( ( ( N - k ) ( .g ` ( mulGrp ` ( Scalar ` P ) ) ) A ) ( .s ` P ) ( ( N - k ) .^ ( 1r ` P ) ) ) = ( ( ( N - k ) E A ) ( .s ` P ) ( 1r ` P ) ) ) |
| 70 |
53 69
|
eqtrd |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( ( N - k ) .^ ( A ( .s ` P ) ( 1r ` P ) ) ) = ( ( ( N - k ) E A ) ( .s ` P ) ( 1r ` P ) ) ) |
| 71 |
9 12 20 49 44
|
asclval |
|- ( A e. ( Base ` ( Scalar ` P ) ) -> ( S ` A ) = ( A ( .s ` P ) ( 1r ` P ) ) ) |
| 72 |
43 71
|
syl |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( S ` A ) = ( A ( .s ` P ) ( 1r ` P ) ) ) |
| 73 |
72
|
oveq2d |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( ( N - k ) .^ ( S ` A ) ) = ( ( N - k ) .^ ( A ( .s ` P ) ( 1r ` P ) ) ) ) |
| 74 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
| 75 |
10
|
ringmgp |
|- ( R e. Ring -> H e. Mnd ) |
| 76 |
13 75
|
syl |
|- ( R e. CRing -> H e. Mnd ) |
| 77 |
76
|
3ad2ant1 |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> H e. Mnd ) |
| 78 |
77
|
adantr |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> H e. Mnd ) |
| 79 |
|
simpr |
|- ( ( R e. CRing /\ A e. K ) -> A e. K ) |
| 80 |
10 8
|
mgpbas |
|- K = ( Base ` H ) |
| 81 |
79 80
|
eleqtrdi |
|- ( ( R e. CRing /\ A e. K ) -> A e. ( Base ` H ) ) |
| 82 |
81
|
3adant2 |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> A e. ( Base ` H ) ) |
| 83 |
82
|
adantr |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> A e. ( Base ` H ) ) |
| 84 |
74 11 78 37 83
|
mulgnn0cld |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( ( N - k ) E A ) e. ( Base ` H ) ) |
| 85 |
24
|
adantr |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> R = ( Scalar ` P ) ) |
| 86 |
85
|
eqcomd |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( Scalar ` P ) = R ) |
| 87 |
86
|
fveq2d |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( Base ` ( Scalar ` P ) ) = ( Base ` R ) ) |
| 88 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 89 |
10 88
|
mgpbas |
|- ( Base ` R ) = ( Base ` H ) |
| 90 |
87 89
|
eqtrdi |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( Base ` ( Scalar ` P ) ) = ( Base ` H ) ) |
| 91 |
84 90
|
eleqtrrd |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( ( N - k ) E A ) e. ( Base ` ( Scalar ` P ) ) ) |
| 92 |
9 12 20 49 44
|
asclval |
|- ( ( ( N - k ) E A ) e. ( Base ` ( Scalar ` P ) ) -> ( S ` ( ( N - k ) E A ) ) = ( ( ( N - k ) E A ) ( .s ` P ) ( 1r ` P ) ) ) |
| 93 |
91 92
|
syl |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( S ` ( ( N - k ) E A ) ) = ( ( ( N - k ) E A ) ( .s ` P ) ( 1r ` P ) ) ) |
| 94 |
70 73 93
|
3eqtr4d |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( ( N - k ) .^ ( S ` A ) ) = ( S ` ( ( N - k ) E A ) ) ) |
| 95 |
94
|
oveq1d |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( ( ( N - k ) .^ ( S ` A ) ) .X. ( k .^ X ) ) = ( ( S ` ( ( N - k ) E A ) ) .X. ( k .^ X ) ) ) |
| 96 |
95
|
oveq2d |
|- ( ( ( R e. CRing /\ N e. NN0 /\ A e. K ) /\ k e. ( 0 ... N ) ) -> ( ( N _C k ) .x. ( ( ( N - k ) .^ ( S ` A ) ) .X. ( k .^ X ) ) ) = ( ( N _C k ) .x. ( ( S ` ( ( N - k ) E A ) ) .X. ( k .^ X ) ) ) ) |
| 97 |
96
|
mpteq2dva |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ ( S ` A ) ) .X. ( k .^ X ) ) ) ) = ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( S ` ( ( N - k ) E A ) ) .X. ( k .^ X ) ) ) ) ) |
| 98 |
97
|
oveq2d |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> ( P gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ ( S ` A ) ) .X. ( k .^ X ) ) ) ) ) = ( P gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( S ` ( ( N - k ) E A ) ) .X. ( k .^ X ) ) ) ) ) ) |
| 99 |
32 98
|
eqtrd |
|- ( ( R e. CRing /\ N e. NN0 /\ A e. K ) -> ( N .^ ( X .+ ( S ` A ) ) ) = ( P gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( S ` ( ( N - k ) E A ) ) .X. ( k .^ X ) ) ) ) ) ) |