| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1val.1 |
|- P = ( Poly1 ` R ) |
| 2 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
| 3 |
|
eqid |
|- ( PwSer1 ` R ) = ( PwSer1 ` R ) |
| 4 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 5 |
1 3 4
|
ply1subrg |
|- ( R e. Ring -> ( Base ` P ) e. ( SubRing ` ( PwSer1 ` R ) ) ) |
| 6 |
2 5
|
syl |
|- ( R e. CRing -> ( Base ` P ) e. ( SubRing ` ( PwSer1 ` R ) ) ) |
| 7 |
1 3 4
|
ply1lss |
|- ( R e. Ring -> ( Base ` P ) e. ( LSubSp ` ( PwSer1 ` R ) ) ) |
| 8 |
2 7
|
syl |
|- ( R e. CRing -> ( Base ` P ) e. ( LSubSp ` ( PwSer1 ` R ) ) ) |
| 9 |
3
|
psr1assa |
|- ( R e. CRing -> ( PwSer1 ` R ) e. AssAlg ) |
| 10 |
|
eqid |
|- ( 1r ` ( PwSer1 ` R ) ) = ( 1r ` ( PwSer1 ` R ) ) |
| 11 |
10
|
subrg1cl |
|- ( ( Base ` P ) e. ( SubRing ` ( PwSer1 ` R ) ) -> ( 1r ` ( PwSer1 ` R ) ) e. ( Base ` P ) ) |
| 12 |
6 11
|
syl |
|- ( R e. CRing -> ( 1r ` ( PwSer1 ` R ) ) e. ( Base ` P ) ) |
| 13 |
|
eqid |
|- ( Base ` ( PwSer1 ` R ) ) = ( Base ` ( PwSer1 ` R ) ) |
| 14 |
13
|
subrgss |
|- ( ( Base ` P ) e. ( SubRing ` ( PwSer1 ` R ) ) -> ( Base ` P ) C_ ( Base ` ( PwSer1 ` R ) ) ) |
| 15 |
6 14
|
syl |
|- ( R e. CRing -> ( Base ` P ) C_ ( Base ` ( PwSer1 ` R ) ) ) |
| 16 |
1 3
|
ply1val |
|- P = ( ( PwSer1 ` R ) |`s ( Base ` ( 1o mPoly R ) ) ) |
| 17 |
1 4
|
ply1bas |
|- ( Base ` P ) = ( Base ` ( 1o mPoly R ) ) |
| 18 |
17
|
oveq2i |
|- ( ( PwSer1 ` R ) |`s ( Base ` P ) ) = ( ( PwSer1 ` R ) |`s ( Base ` ( 1o mPoly R ) ) ) |
| 19 |
16 18
|
eqtr4i |
|- P = ( ( PwSer1 ` R ) |`s ( Base ` P ) ) |
| 20 |
|
eqid |
|- ( LSubSp ` ( PwSer1 ` R ) ) = ( LSubSp ` ( PwSer1 ` R ) ) |
| 21 |
19 20 13 10
|
issubassa |
|- ( ( ( PwSer1 ` R ) e. AssAlg /\ ( 1r ` ( PwSer1 ` R ) ) e. ( Base ` P ) /\ ( Base ` P ) C_ ( Base ` ( PwSer1 ` R ) ) ) -> ( P e. AssAlg <-> ( ( Base ` P ) e. ( SubRing ` ( PwSer1 ` R ) ) /\ ( Base ` P ) e. ( LSubSp ` ( PwSer1 ` R ) ) ) ) ) |
| 22 |
9 12 15 21
|
syl3anc |
|- ( R e. CRing -> ( P e. AssAlg <-> ( ( Base ` P ) e. ( SubRing ` ( PwSer1 ` R ) ) /\ ( Base ` P ) e. ( LSubSp ` ( PwSer1 ` R ) ) ) ) ) |
| 23 |
6 8 22
|
mpbir2and |
|- ( R e. CRing -> P e. AssAlg ) |