| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1val.1 |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 3 |
|
eqid |
⊢ ( PwSer1 ‘ 𝑅 ) = ( PwSer1 ‘ 𝑅 ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 5 |
1 3 4
|
ply1subrg |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( PwSer1 ‘ 𝑅 ) ) ) |
| 6 |
2 5
|
syl |
⊢ ( 𝑅 ∈ CRing → ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( PwSer1 ‘ 𝑅 ) ) ) |
| 7 |
1 3 4
|
ply1lss |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑃 ) ∈ ( LSubSp ‘ ( PwSer1 ‘ 𝑅 ) ) ) |
| 8 |
2 7
|
syl |
⊢ ( 𝑅 ∈ CRing → ( Base ‘ 𝑃 ) ∈ ( LSubSp ‘ ( PwSer1 ‘ 𝑅 ) ) ) |
| 9 |
3
|
psr1assa |
⊢ ( 𝑅 ∈ CRing → ( PwSer1 ‘ 𝑅 ) ∈ AssAlg ) |
| 10 |
|
eqid |
⊢ ( 1r ‘ ( PwSer1 ‘ 𝑅 ) ) = ( 1r ‘ ( PwSer1 ‘ 𝑅 ) ) |
| 11 |
10
|
subrg1cl |
⊢ ( ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( PwSer1 ‘ 𝑅 ) ) → ( 1r ‘ ( PwSer1 ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 12 |
6 11
|
syl |
⊢ ( 𝑅 ∈ CRing → ( 1r ‘ ( PwSer1 ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 13 |
|
eqid |
⊢ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) = ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) |
| 14 |
13
|
subrgss |
⊢ ( ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( PwSer1 ‘ 𝑅 ) ) → ( Base ‘ 𝑃 ) ⊆ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) ) |
| 15 |
6 14
|
syl |
⊢ ( 𝑅 ∈ CRing → ( Base ‘ 𝑃 ) ⊆ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) ) |
| 16 |
1 3
|
ply1val |
⊢ 𝑃 = ( ( PwSer1 ‘ 𝑅 ) ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
| 17 |
1 4
|
ply1bas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
| 18 |
17
|
oveq2i |
⊢ ( ( PwSer1 ‘ 𝑅 ) ↾s ( Base ‘ 𝑃 ) ) = ( ( PwSer1 ‘ 𝑅 ) ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
| 19 |
16 18
|
eqtr4i |
⊢ 𝑃 = ( ( PwSer1 ‘ 𝑅 ) ↾s ( Base ‘ 𝑃 ) ) |
| 20 |
|
eqid |
⊢ ( LSubSp ‘ ( PwSer1 ‘ 𝑅 ) ) = ( LSubSp ‘ ( PwSer1 ‘ 𝑅 ) ) |
| 21 |
19 20 13 10
|
issubassa |
⊢ ( ( ( PwSer1 ‘ 𝑅 ) ∈ AssAlg ∧ ( 1r ‘ ( PwSer1 ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ∧ ( Base ‘ 𝑃 ) ⊆ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) ) → ( 𝑃 ∈ AssAlg ↔ ( ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( PwSer1 ‘ 𝑅 ) ) ∧ ( Base ‘ 𝑃 ) ∈ ( LSubSp ‘ ( PwSer1 ‘ 𝑅 ) ) ) ) ) |
| 22 |
9 12 15 21
|
syl3anc |
⊢ ( 𝑅 ∈ CRing → ( 𝑃 ∈ AssAlg ↔ ( ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( PwSer1 ‘ 𝑅 ) ) ∧ ( Base ‘ 𝑃 ) ∈ ( LSubSp ‘ ( PwSer1 ‘ 𝑅 ) ) ) ) ) |
| 23 |
6 8 22
|
mpbir2and |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ AssAlg ) |