Metamath Proof Explorer


Theorem ply1subrg

Description: Univariate polynomials form a subring of the set of univariate power series. (Contributed by Mario Carneiro, 9-Feb-2015)

Ref Expression
Hypotheses ply1val.1 𝑃 = ( Poly1𝑅 )
ply1val.2 𝑆 = ( PwSer1𝑅 )
ply1bas.u 𝑈 = ( Base ‘ 𝑃 )
Assertion ply1subrg ( 𝑅 ∈ Ring → 𝑈 ∈ ( SubRing ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 ply1val.1 𝑃 = ( Poly1𝑅 )
2 ply1val.2 𝑆 = ( PwSer1𝑅 )
3 ply1bas.u 𝑈 = ( Base ‘ 𝑃 )
4 eqid ( 1o mPwSer 𝑅 ) = ( 1o mPwSer 𝑅 )
5 eqid ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 )
6 1 2 3 ply1bas 𝑈 = ( Base ‘ ( 1o mPoly 𝑅 ) )
7 1on 1o ∈ On
8 7 a1i ( 𝑅 ∈ Ring → 1o ∈ On )
9 id ( 𝑅 ∈ Ring → 𝑅 ∈ Ring )
10 4 5 6 8 9 mplsubrg ( 𝑅 ∈ Ring → 𝑈 ∈ ( SubRing ‘ ( 1o mPwSer 𝑅 ) ) )
11 eqidd ( 𝑅 ∈ Ring → ( Base ‘ ( 1o mPwSer 𝑅 ) ) = ( Base ‘ ( 1o mPwSer 𝑅 ) ) )
12 2 psr1val 𝑆 = ( ( 1o ordPwSer 𝑅 ) ‘ ∅ )
13 0ss ∅ ⊆ ( 1o × 1o )
14 13 a1i ( 𝑅 ∈ Ring → ∅ ⊆ ( 1o × 1o ) )
15 4 12 14 opsrbas ( 𝑅 ∈ Ring → ( Base ‘ ( 1o mPwSer 𝑅 ) ) = ( Base ‘ 𝑆 ) )
16 4 12 14 opsrplusg ( 𝑅 ∈ Ring → ( +g ‘ ( 1o mPwSer 𝑅 ) ) = ( +g𝑆 ) )
17 16 oveqdr ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ) ) → ( 𝑥 ( +g ‘ ( 1o mPwSer 𝑅 ) ) 𝑦 ) = ( 𝑥 ( +g𝑆 ) 𝑦 ) )
18 4 12 14 opsrmulr ( 𝑅 ∈ Ring → ( .r ‘ ( 1o mPwSer 𝑅 ) ) = ( .r𝑆 ) )
19 18 oveqdr ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 1o mPwSer 𝑅 ) ) ) ) → ( 𝑥 ( .r ‘ ( 1o mPwSer 𝑅 ) ) 𝑦 ) = ( 𝑥 ( .r𝑆 ) 𝑦 ) )
20 11 15 17 19 subrgpropd ( 𝑅 ∈ Ring → ( SubRing ‘ ( 1o mPwSer 𝑅 ) ) = ( SubRing ‘ 𝑆 ) )
21 10 20 eleqtrd ( 𝑅 ∈ Ring → 𝑈 ∈ ( SubRing ‘ 𝑆 ) )