| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrgpropd.1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) |
| 2 |
|
subrgpropd.2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) |
| 3 |
|
subrgpropd.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
| 4 |
|
subrgpropd.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) |
| 5 |
1 2 3 4
|
ringpropd |
⊢ ( 𝜑 → ( 𝐾 ∈ Ring ↔ 𝐿 ∈ Ring ) ) |
| 6 |
1
|
ineq2d |
⊢ ( 𝜑 → ( 𝑠 ∩ 𝐵 ) = ( 𝑠 ∩ ( Base ‘ 𝐾 ) ) ) |
| 7 |
|
eqid |
⊢ ( 𝐾 ↾s 𝑠 ) = ( 𝐾 ↾s 𝑠 ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 9 |
7 8
|
ressbas |
⊢ ( 𝑠 ∈ V → ( 𝑠 ∩ ( Base ‘ 𝐾 ) ) = ( Base ‘ ( 𝐾 ↾s 𝑠 ) ) ) |
| 10 |
9
|
elv |
⊢ ( 𝑠 ∩ ( Base ‘ 𝐾 ) ) = ( Base ‘ ( 𝐾 ↾s 𝑠 ) ) |
| 11 |
6 10
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑠 ∩ 𝐵 ) = ( Base ‘ ( 𝐾 ↾s 𝑠 ) ) ) |
| 12 |
2
|
ineq2d |
⊢ ( 𝜑 → ( 𝑠 ∩ 𝐵 ) = ( 𝑠 ∩ ( Base ‘ 𝐿 ) ) ) |
| 13 |
|
eqid |
⊢ ( 𝐿 ↾s 𝑠 ) = ( 𝐿 ↾s 𝑠 ) |
| 14 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
| 15 |
13 14
|
ressbas |
⊢ ( 𝑠 ∈ V → ( 𝑠 ∩ ( Base ‘ 𝐿 ) ) = ( Base ‘ ( 𝐿 ↾s 𝑠 ) ) ) |
| 16 |
15
|
elv |
⊢ ( 𝑠 ∩ ( Base ‘ 𝐿 ) ) = ( Base ‘ ( 𝐿 ↾s 𝑠 ) ) |
| 17 |
12 16
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑠 ∩ 𝐵 ) = ( Base ‘ ( 𝐿 ↾s 𝑠 ) ) ) |
| 18 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( 𝑠 ∩ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 19 |
|
elinel2 |
⊢ ( 𝑦 ∈ ( 𝑠 ∩ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
| 20 |
18 19
|
anim12i |
⊢ ( ( 𝑥 ∈ ( 𝑠 ∩ 𝐵 ) ∧ 𝑦 ∈ ( 𝑠 ∩ 𝐵 ) ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
| 21 |
|
eqid |
⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐾 ) |
| 22 |
7 21
|
ressplusg |
⊢ ( 𝑠 ∈ V → ( +g ‘ 𝐾 ) = ( +g ‘ ( 𝐾 ↾s 𝑠 ) ) ) |
| 23 |
22
|
elv |
⊢ ( +g ‘ 𝐾 ) = ( +g ‘ ( 𝐾 ↾s 𝑠 ) ) |
| 24 |
23
|
oveqi |
⊢ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 𝐾 ↾s 𝑠 ) ) 𝑦 ) |
| 25 |
|
eqid |
⊢ ( +g ‘ 𝐿 ) = ( +g ‘ 𝐿 ) |
| 26 |
13 25
|
ressplusg |
⊢ ( 𝑠 ∈ V → ( +g ‘ 𝐿 ) = ( +g ‘ ( 𝐿 ↾s 𝑠 ) ) ) |
| 27 |
26
|
elv |
⊢ ( +g ‘ 𝐿 ) = ( +g ‘ ( 𝐿 ↾s 𝑠 ) ) |
| 28 |
27
|
oveqi |
⊢ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 𝐿 ↾s 𝑠 ) ) 𝑦 ) |
| 29 |
3 24 28
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ ( 𝐾 ↾s 𝑠 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 𝐿 ↾s 𝑠 ) ) 𝑦 ) ) |
| 30 |
20 29
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑠 ∩ 𝐵 ) ∧ 𝑦 ∈ ( 𝑠 ∩ 𝐵 ) ) ) → ( 𝑥 ( +g ‘ ( 𝐾 ↾s 𝑠 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 𝐿 ↾s 𝑠 ) ) 𝑦 ) ) |
| 31 |
|
eqid |
⊢ ( .r ‘ 𝐾 ) = ( .r ‘ 𝐾 ) |
| 32 |
7 31
|
ressmulr |
⊢ ( 𝑠 ∈ V → ( .r ‘ 𝐾 ) = ( .r ‘ ( 𝐾 ↾s 𝑠 ) ) ) |
| 33 |
32
|
elv |
⊢ ( .r ‘ 𝐾 ) = ( .r ‘ ( 𝐾 ↾s 𝑠 ) ) |
| 34 |
33
|
oveqi |
⊢ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ ( 𝐾 ↾s 𝑠 ) ) 𝑦 ) |
| 35 |
|
eqid |
⊢ ( .r ‘ 𝐿 ) = ( .r ‘ 𝐿 ) |
| 36 |
13 35
|
ressmulr |
⊢ ( 𝑠 ∈ V → ( .r ‘ 𝐿 ) = ( .r ‘ ( 𝐿 ↾s 𝑠 ) ) ) |
| 37 |
36
|
elv |
⊢ ( .r ‘ 𝐿 ) = ( .r ‘ ( 𝐿 ↾s 𝑠 ) ) |
| 38 |
37
|
oveqi |
⊢ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = ( 𝑥 ( .r ‘ ( 𝐿 ↾s 𝑠 ) ) 𝑦 ) |
| 39 |
4 34 38
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ ( 𝐾 ↾s 𝑠 ) ) 𝑦 ) = ( 𝑥 ( .r ‘ ( 𝐿 ↾s 𝑠 ) ) 𝑦 ) ) |
| 40 |
20 39
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑠 ∩ 𝐵 ) ∧ 𝑦 ∈ ( 𝑠 ∩ 𝐵 ) ) ) → ( 𝑥 ( .r ‘ ( 𝐾 ↾s 𝑠 ) ) 𝑦 ) = ( 𝑥 ( .r ‘ ( 𝐿 ↾s 𝑠 ) ) 𝑦 ) ) |
| 41 |
11 17 30 40
|
ringpropd |
⊢ ( 𝜑 → ( ( 𝐾 ↾s 𝑠 ) ∈ Ring ↔ ( 𝐿 ↾s 𝑠 ) ∈ Ring ) ) |
| 42 |
5 41
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝐾 ∈ Ring ∧ ( 𝐾 ↾s 𝑠 ) ∈ Ring ) ↔ ( 𝐿 ∈ Ring ∧ ( 𝐿 ↾s 𝑠 ) ∈ Ring ) ) ) |
| 43 |
1 2
|
eqtr3d |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) ) |
| 44 |
43
|
sseq2d |
⊢ ( 𝜑 → ( 𝑠 ⊆ ( Base ‘ 𝐾 ) ↔ 𝑠 ⊆ ( Base ‘ 𝐿 ) ) ) |
| 45 |
1 2 4
|
rngidpropd |
⊢ ( 𝜑 → ( 1r ‘ 𝐾 ) = ( 1r ‘ 𝐿 ) ) |
| 46 |
45
|
eleq1d |
⊢ ( 𝜑 → ( ( 1r ‘ 𝐾 ) ∈ 𝑠 ↔ ( 1r ‘ 𝐿 ) ∈ 𝑠 ) ) |
| 47 |
44 46
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑠 ⊆ ( Base ‘ 𝐾 ) ∧ ( 1r ‘ 𝐾 ) ∈ 𝑠 ) ↔ ( 𝑠 ⊆ ( Base ‘ 𝐿 ) ∧ ( 1r ‘ 𝐿 ) ∈ 𝑠 ) ) ) |
| 48 |
42 47
|
anbi12d |
⊢ ( 𝜑 → ( ( ( 𝐾 ∈ Ring ∧ ( 𝐾 ↾s 𝑠 ) ∈ Ring ) ∧ ( 𝑠 ⊆ ( Base ‘ 𝐾 ) ∧ ( 1r ‘ 𝐾 ) ∈ 𝑠 ) ) ↔ ( ( 𝐿 ∈ Ring ∧ ( 𝐿 ↾s 𝑠 ) ∈ Ring ) ∧ ( 𝑠 ⊆ ( Base ‘ 𝐿 ) ∧ ( 1r ‘ 𝐿 ) ∈ 𝑠 ) ) ) ) |
| 49 |
|
eqid |
⊢ ( 1r ‘ 𝐾 ) = ( 1r ‘ 𝐾 ) |
| 50 |
8 49
|
issubrg |
⊢ ( 𝑠 ∈ ( SubRing ‘ 𝐾 ) ↔ ( ( 𝐾 ∈ Ring ∧ ( 𝐾 ↾s 𝑠 ) ∈ Ring ) ∧ ( 𝑠 ⊆ ( Base ‘ 𝐾 ) ∧ ( 1r ‘ 𝐾 ) ∈ 𝑠 ) ) ) |
| 51 |
|
eqid |
⊢ ( 1r ‘ 𝐿 ) = ( 1r ‘ 𝐿 ) |
| 52 |
14 51
|
issubrg |
⊢ ( 𝑠 ∈ ( SubRing ‘ 𝐿 ) ↔ ( ( 𝐿 ∈ Ring ∧ ( 𝐿 ↾s 𝑠 ) ∈ Ring ) ∧ ( 𝑠 ⊆ ( Base ‘ 𝐿 ) ∧ ( 1r ‘ 𝐿 ) ∈ 𝑠 ) ) ) |
| 53 |
48 50 52
|
3bitr4g |
⊢ ( 𝜑 → ( 𝑠 ∈ ( SubRing ‘ 𝐾 ) ↔ 𝑠 ∈ ( SubRing ‘ 𝐿 ) ) ) |
| 54 |
53
|
eqrdv |
⊢ ( 𝜑 → ( SubRing ‘ 𝐾 ) = ( SubRing ‘ 𝐿 ) ) |