Description: If two structures have the same group components (properties), they have the same set of subrings. (Contributed by Mario Carneiro, 9-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | subrgpropd.1 | |
|
subrgpropd.2 | |
||
subrgpropd.3 | |
||
subrgpropd.4 | |
||
Assertion | subrgpropd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgpropd.1 | |
|
2 | subrgpropd.2 | |
|
3 | subrgpropd.3 | |
|
4 | subrgpropd.4 | |
|
5 | 1 2 3 4 | ringpropd | |
6 | 1 | ineq2d | |
7 | eqid | |
|
8 | eqid | |
|
9 | 7 8 | ressbas | |
10 | 9 | elv | |
11 | 6 10 | eqtrdi | |
12 | 2 | ineq2d | |
13 | eqid | |
|
14 | eqid | |
|
15 | 13 14 | ressbas | |
16 | 15 | elv | |
17 | 12 16 | eqtrdi | |
18 | elinel2 | |
|
19 | elinel2 | |
|
20 | 18 19 | anim12i | |
21 | eqid | |
|
22 | 7 21 | ressplusg | |
23 | 22 | elv | |
24 | 23 | oveqi | |
25 | eqid | |
|
26 | 13 25 | ressplusg | |
27 | 26 | elv | |
28 | 27 | oveqi | |
29 | 3 24 28 | 3eqtr3g | |
30 | 20 29 | sylan2 | |
31 | eqid | |
|
32 | 7 31 | ressmulr | |
33 | 32 | elv | |
34 | 33 | oveqi | |
35 | eqid | |
|
36 | 13 35 | ressmulr | |
37 | 36 | elv | |
38 | 37 | oveqi | |
39 | 4 34 38 | 3eqtr3g | |
40 | 20 39 | sylan2 | |
41 | 11 17 30 40 | ringpropd | |
42 | 5 41 | anbi12d | |
43 | 1 2 | eqtr3d | |
44 | 43 | sseq2d | |
45 | 1 2 4 | rngidpropd | |
46 | 45 | eleq1d | |
47 | 44 46 | anbi12d | |
48 | 42 47 | anbi12d | |
49 | eqid | |
|
50 | 8 49 | issubrg | |
51 | eqid | |
|
52 | 14 51 | issubrg | |
53 | 48 50 52 | 3bitr4g | |
54 | 53 | eqrdv | |