Metamath Proof Explorer


Theorem subrgpropd

Description: If two structures have the same group components (properties), they have the same set of subrings. (Contributed by Mario Carneiro, 9-Feb-2015)

Ref Expression
Hypotheses subrgpropd.1 φB=BaseK
subrgpropd.2 φB=BaseL
subrgpropd.3 φxByBx+Ky=x+Ly
subrgpropd.4 φxByBxKy=xLy
Assertion subrgpropd φSubRingK=SubRingL

Proof

Step Hyp Ref Expression
1 subrgpropd.1 φB=BaseK
2 subrgpropd.2 φB=BaseL
3 subrgpropd.3 φxByBx+Ky=x+Ly
4 subrgpropd.4 φxByBxKy=xLy
5 1 2 3 4 ringpropd φKRingLRing
6 1 ineq2d φsB=sBaseK
7 eqid K𝑠s=K𝑠s
8 eqid BaseK=BaseK
9 7 8 ressbas sVsBaseK=BaseK𝑠s
10 9 elv sBaseK=BaseK𝑠s
11 6 10 eqtrdi φsB=BaseK𝑠s
12 2 ineq2d φsB=sBaseL
13 eqid L𝑠s=L𝑠s
14 eqid BaseL=BaseL
15 13 14 ressbas sVsBaseL=BaseL𝑠s
16 15 elv sBaseL=BaseL𝑠s
17 12 16 eqtrdi φsB=BaseL𝑠s
18 elinel2 xsBxB
19 elinel2 ysByB
20 18 19 anim12i xsBysBxByB
21 eqid +K=+K
22 7 21 ressplusg sV+K=+K𝑠s
23 22 elv +K=+K𝑠s
24 23 oveqi x+Ky=x+K𝑠sy
25 eqid +L=+L
26 13 25 ressplusg sV+L=+L𝑠s
27 26 elv +L=+L𝑠s
28 27 oveqi x+Ly=x+L𝑠sy
29 3 24 28 3eqtr3g φxByBx+K𝑠sy=x+L𝑠sy
30 20 29 sylan2 φxsBysBx+K𝑠sy=x+L𝑠sy
31 eqid K=K
32 7 31 ressmulr sVK=K𝑠s
33 32 elv K=K𝑠s
34 33 oveqi xKy=xK𝑠sy
35 eqid L=L
36 13 35 ressmulr sVL=L𝑠s
37 36 elv L=L𝑠s
38 37 oveqi xLy=xL𝑠sy
39 4 34 38 3eqtr3g φxByBxK𝑠sy=xL𝑠sy
40 20 39 sylan2 φxsBysBxK𝑠sy=xL𝑠sy
41 11 17 30 40 ringpropd φK𝑠sRingL𝑠sRing
42 5 41 anbi12d φKRingK𝑠sRingLRingL𝑠sRing
43 1 2 eqtr3d φBaseK=BaseL
44 43 sseq2d φsBaseKsBaseL
45 1 2 4 rngidpropd φ1K=1L
46 45 eleq1d φ1Ks1Ls
47 44 46 anbi12d φsBaseK1KssBaseL1Ls
48 42 47 anbi12d φKRingK𝑠sRingsBaseK1KsLRingL𝑠sRingsBaseL1Ls
49 eqid 1K=1K
50 8 49 issubrg sSubRingKKRingK𝑠sRingsBaseK1Ks
51 eqid 1L=1L
52 14 51 issubrg sSubRingLLRingL𝑠sRingsBaseL1Ls
53 48 50 52 3bitr4g φsSubRingKsSubRingL
54 53 eqrdv φSubRingK=SubRingL