Metamath Proof Explorer


Theorem rhmpropd

Description: Ring homomorphism depends only on the ring attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses rhmpropd.a φ B = Base J
rhmpropd.b φ C = Base K
rhmpropd.c φ B = Base L
rhmpropd.d φ C = Base M
rhmpropd.e φ x B y B x + J y = x + L y
rhmpropd.f φ x C y C x + K y = x + M y
rhmpropd.g φ x B y B x J y = x L y
rhmpropd.h φ x C y C x K y = x M y
Assertion rhmpropd φ J RingHom K = L RingHom M

Proof

Step Hyp Ref Expression
1 rhmpropd.a φ B = Base J
2 rhmpropd.b φ C = Base K
3 rhmpropd.c φ B = Base L
4 rhmpropd.d φ C = Base M
5 rhmpropd.e φ x B y B x + J y = x + L y
6 rhmpropd.f φ x C y C x + K y = x + M y
7 rhmpropd.g φ x B y B x J y = x L y
8 rhmpropd.h φ x C y C x K y = x M y
9 1 3 5 7 ringpropd φ J Ring L Ring
10 2 4 6 8 ringpropd φ K Ring M Ring
11 9 10 anbi12d φ J Ring K Ring L Ring M Ring
12 1 2 3 4 5 6 ghmpropd φ J GrpHom K = L GrpHom M
13 12 eleq2d φ f J GrpHom K f L GrpHom M
14 eqid mulGrp J = mulGrp J
15 eqid Base J = Base J
16 14 15 mgpbas Base J = Base mulGrp J
17 1 16 syl6eq φ B = Base mulGrp J
18 eqid mulGrp K = mulGrp K
19 eqid Base K = Base K
20 18 19 mgpbas Base K = Base mulGrp K
21 2 20 syl6eq φ C = Base mulGrp K
22 eqid mulGrp L = mulGrp L
23 eqid Base L = Base L
24 22 23 mgpbas Base L = Base mulGrp L
25 3 24 syl6eq φ B = Base mulGrp L
26 eqid mulGrp M = mulGrp M
27 eqid Base M = Base M
28 26 27 mgpbas Base M = Base mulGrp M
29 4 28 syl6eq φ C = Base mulGrp M
30 eqid J = J
31 14 30 mgpplusg J = + mulGrp J
32 31 oveqi x J y = x + mulGrp J y
33 eqid L = L
34 22 33 mgpplusg L = + mulGrp L
35 34 oveqi x L y = x + mulGrp L y
36 7 32 35 3eqtr3g φ x B y B x + mulGrp J y = x + mulGrp L y
37 eqid K = K
38 18 37 mgpplusg K = + mulGrp K
39 38 oveqi x K y = x + mulGrp K y
40 eqid M = M
41 26 40 mgpplusg M = + mulGrp M
42 41 oveqi x M y = x + mulGrp M y
43 8 39 42 3eqtr3g φ x C y C x + mulGrp K y = x + mulGrp M y
44 17 21 25 29 36 43 mhmpropd φ mulGrp J MndHom mulGrp K = mulGrp L MndHom mulGrp M
45 44 eleq2d φ f mulGrp J MndHom mulGrp K f mulGrp L MndHom mulGrp M
46 13 45 anbi12d φ f J GrpHom K f mulGrp J MndHom mulGrp K f L GrpHom M f mulGrp L MndHom mulGrp M
47 11 46 anbi12d φ J Ring K Ring f J GrpHom K f mulGrp J MndHom mulGrp K L Ring M Ring f L GrpHom M f mulGrp L MndHom mulGrp M
48 14 18 isrhm f J RingHom K J Ring K Ring f J GrpHom K f mulGrp J MndHom mulGrp K
49 22 26 isrhm f L RingHom M L Ring M Ring f L GrpHom M f mulGrp L MndHom mulGrp M
50 47 48 49 3bitr4g φ f J RingHom K f L RingHom M
51 50 eqrdv φ J RingHom K = L RingHom M