| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mplsubg.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
| 2 |
|
mplsubg.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
| 3 |
|
mplsubg.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
| 4 |
|
mplsubg.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
| 5 |
|
mpllss.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 6 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
| 7 |
5 6
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 8 |
1 2 3 4 7
|
mplsubg |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝑆 ) ) |
| 9 |
1 4 5
|
psrring |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 11 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
| 12 |
10 11
|
ringidcl |
⊢ ( 𝑆 ∈ Ring → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
| 13 |
9 12
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
| 14 |
|
eqid |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
| 15 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 16 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 17 |
1 4 5 14 15 16 11
|
psr1 |
⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) = ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 18 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
| 19 |
18
|
mptrabex |
⊢ ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∈ V |
| 20 |
|
funmpt |
⊢ Fun ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 21 |
|
fvex |
⊢ ( 0g ‘ 𝑅 ) ∈ V |
| 22 |
19 20 21
|
3pm3.2i |
⊢ ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∧ ( 0g ‘ 𝑅 ) ∈ V ) |
| 23 |
22
|
a1i |
⊢ ( 𝜑 → ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∧ ( 0g ‘ 𝑅 ) ∈ V ) ) |
| 24 |
|
snfi |
⊢ { ( 𝐼 × { 0 } ) } ∈ Fin |
| 25 |
24
|
a1i |
⊢ ( 𝜑 → { ( 𝐼 × { 0 } ) } ∈ Fin ) |
| 26 |
|
eldifsni |
⊢ ( 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝐼 × { 0 } ) } ) → 𝑘 ≠ ( 𝐼 × { 0 } ) ) |
| 27 |
26
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝐼 × { 0 } ) } ) ) → 𝑘 ≠ ( 𝐼 × { 0 } ) ) |
| 28 |
|
ifnefalse |
⊢ ( 𝑘 ≠ ( 𝐼 × { 0 } ) → if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 29 |
27 28
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝐼 × { 0 } ) } ) ) → if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 30 |
18
|
rabex |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V |
| 31 |
30
|
a1i |
⊢ ( 𝜑 → { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V ) |
| 32 |
29 31
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ { ( 𝐼 × { 0 } ) } ) |
| 33 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∧ ( 0g ‘ 𝑅 ) ∈ V ) ∧ ( { ( 𝐼 × { 0 } ) } ∈ Fin ∧ ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ { ( 𝐼 × { 0 } ) } ) ) → ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 34 |
23 25 32 33
|
syl12anc |
⊢ ( 𝜑 → ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 35 |
17 34
|
eqbrtrd |
⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) finSupp ( 0g ‘ 𝑅 ) ) |
| 36 |
2 1 10 15 3
|
mplelbas |
⊢ ( ( 1r ‘ 𝑆 ) ∈ 𝑈 ↔ ( ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 1r ‘ 𝑆 ) finSupp ( 0g ‘ 𝑅 ) ) ) |
| 37 |
13 35 36
|
sylanbrc |
⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) ∈ 𝑈 ) |
| 38 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝐼 ∈ 𝑊 ) |
| 39 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑅 ∈ Ring ) |
| 40 |
|
eqid |
⊢ ( ∘f + “ ( ( 𝑥 supp ( 0g ‘ 𝑅 ) ) × ( 𝑦 supp ( 0g ‘ 𝑅 ) ) ) ) = ( ∘f + “ ( ( 𝑥 supp ( 0g ‘ 𝑅 ) ) × ( 𝑦 supp ( 0g ‘ 𝑅 ) ) ) ) |
| 41 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 42 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑥 ∈ 𝑈 ) |
| 43 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑦 ∈ 𝑈 ) |
| 44 |
1 2 3 38 39 14 15 40 41 42 43
|
mplsubrglem |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ∈ 𝑈 ) |
| 45 |
44
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ∈ 𝑈 ) |
| 46 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
| 47 |
10 11 46
|
issubrg2 |
⊢ ( 𝑆 ∈ Ring → ( 𝑈 ∈ ( SubRing ‘ 𝑆 ) ↔ ( 𝑈 ∈ ( SubGrp ‘ 𝑆 ) ∧ ( 1r ‘ 𝑆 ) ∈ 𝑈 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ∈ 𝑈 ) ) ) |
| 48 |
9 47
|
syl |
⊢ ( 𝜑 → ( 𝑈 ∈ ( SubRing ‘ 𝑆 ) ↔ ( 𝑈 ∈ ( SubGrp ‘ 𝑆 ) ∧ ( 1r ‘ 𝑆 ) ∈ 𝑈 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ∈ 𝑈 ) ) ) |
| 49 |
8 37 45 48
|
mpbir3and |
⊢ ( 𝜑 → 𝑈 ∈ ( SubRing ‘ 𝑆 ) ) |