| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mplsubg.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
| 2 |
|
mplsubg.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
| 3 |
|
mplsubg.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
| 4 |
|
mplsubg.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
| 5 |
|
mpllss.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 6 |
|
mplsubrglem.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
| 7 |
|
mplsubrglem.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 8 |
|
mplsubrglem.p |
⊢ 𝐴 = ( ∘f + “ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) |
| 9 |
|
mplsubrglem.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 10 |
|
mplsubrglem.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) |
| 11 |
|
mplsubrglem.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 13 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
| 14 |
2 1 3 12
|
mplbasss |
⊢ 𝑈 ⊆ ( Base ‘ 𝑆 ) |
| 15 |
14 10
|
sselid |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑆 ) ) |
| 16 |
14 11
|
sselid |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝑆 ) ) |
| 17 |
1 12 13 5 15 16
|
psrmulcl |
⊢ ( 𝜑 → ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ∈ ( Base ‘ 𝑆 ) ) |
| 18 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ∈ V ) |
| 19 |
1 12
|
psrelbasfun |
⊢ ( ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ∈ ( Base ‘ 𝑆 ) → Fun ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ) |
| 20 |
17 19
|
syl |
⊢ ( 𝜑 → Fun ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ) |
| 21 |
7
|
fvexi |
⊢ 0 ∈ V |
| 22 |
21
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
| 23 |
|
df-ima |
⊢ ( ∘f + “ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) = ran ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) |
| 24 |
8 23
|
eqtri |
⊢ 𝐴 = ran ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) |
| 25 |
2 1 12 7 3
|
mplelbas |
⊢ ( 𝑋 ∈ 𝑈 ↔ ( 𝑋 ∈ ( Base ‘ 𝑆 ) ∧ 𝑋 finSupp 0 ) ) |
| 26 |
25
|
simprbi |
⊢ ( 𝑋 ∈ 𝑈 → 𝑋 finSupp 0 ) |
| 27 |
10 26
|
syl |
⊢ ( 𝜑 → 𝑋 finSupp 0 ) |
| 28 |
2 1 12 7 3
|
mplelbas |
⊢ ( 𝑌 ∈ 𝑈 ↔ ( 𝑌 ∈ ( Base ‘ 𝑆 ) ∧ 𝑌 finSupp 0 ) ) |
| 29 |
28
|
simprbi |
⊢ ( 𝑌 ∈ 𝑈 → 𝑌 finSupp 0 ) |
| 30 |
11 29
|
syl |
⊢ ( 𝜑 → 𝑌 finSupp 0 ) |
| 31 |
|
fsuppxpfi |
⊢ ( ( 𝑋 finSupp 0 ∧ 𝑌 finSupp 0 ) → ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ∈ Fin ) |
| 32 |
27 30 31
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ∈ Fin ) |
| 33 |
|
ofmres |
⊢ ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) = ( 𝑓 ∈ ( 𝑋 supp 0 ) , 𝑔 ∈ ( 𝑌 supp 0 ) ↦ ( 𝑓 ∘f + 𝑔 ) ) |
| 34 |
|
ovex |
⊢ ( 𝑓 ∘f + 𝑔 ) ∈ V |
| 35 |
33 34
|
fnmpoi |
⊢ ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) Fn ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) |
| 36 |
|
dffn4 |
⊢ ( ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) Fn ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ↔ ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) : ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) –onto→ ran ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) ) |
| 37 |
35 36
|
mpbi |
⊢ ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) : ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) –onto→ ran ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) |
| 38 |
|
fofi |
⊢ ( ( ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ∈ Fin ∧ ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) : ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) –onto→ ran ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) ) → ran ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) ∈ Fin ) |
| 39 |
32 37 38
|
sylancl |
⊢ ( 𝜑 → ran ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) ∈ Fin ) |
| 40 |
24 39
|
eqeltrid |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 41 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 42 |
1 41 6 12 17
|
psrelbas |
⊢ ( 𝜑 → ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 43 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) → 𝑋 ∈ ( Base ‘ 𝑆 ) ) |
| 44 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) → 𝑌 ∈ ( Base ‘ 𝑆 ) ) |
| 45 |
|
eldifi |
⊢ ( 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) → 𝑘 ∈ 𝐷 ) |
| 46 |
45
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) → 𝑘 ∈ 𝐷 ) |
| 47 |
1 12 9 13 6 43 44 46
|
psrmulval |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) → ( ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ‘ 𝑘 ) = ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) |
| 48 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑅 ∈ Ring ) |
| 49 |
2 41 3 6 11
|
mplelf |
⊢ ( 𝜑 → 𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 50 |
49
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 51 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ⊆ 𝐷 |
| 52 |
46
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑘 ∈ 𝐷 ) |
| 53 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) |
| 54 |
|
eqid |
⊢ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } = { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } |
| 55 |
6 54
|
psrbagconcl |
⊢ ( ( 𝑘 ∈ 𝐷 ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑥 ) ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) |
| 56 |
52 53 55
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑥 ) ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) |
| 57 |
51 56
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑥 ) ∈ 𝐷 ) |
| 58 |
50 57
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 59 |
41 9 7
|
ringlz |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( 0 · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = 0 ) |
| 60 |
48 58 59
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 0 · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = 0 ) |
| 61 |
|
oveq1 |
⊢ ( ( 𝑋 ‘ 𝑥 ) = 0 → ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = ( 0 · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) |
| 62 |
61
|
eqeq1d |
⊢ ( ( 𝑋 ‘ 𝑥 ) = 0 → ( ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = 0 ↔ ( 0 · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = 0 ) ) |
| 63 |
60 62
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑋 ‘ 𝑥 ) = 0 → ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = 0 ) ) |
| 64 |
2 41 3 6 10
|
mplelf |
⊢ ( 𝜑 → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 65 |
64
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 66 |
51 53
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑥 ∈ 𝐷 ) |
| 67 |
65 66
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑋 ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
| 68 |
41 9 7
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑋 ‘ 𝑥 ) · 0 ) = 0 ) |
| 69 |
48 67 68
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑋 ‘ 𝑥 ) · 0 ) = 0 ) |
| 70 |
|
oveq2 |
⊢ ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) = 0 → ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = ( ( 𝑋 ‘ 𝑥 ) · 0 ) ) |
| 71 |
70
|
eqeq1d |
⊢ ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) = 0 → ( ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = 0 ↔ ( ( 𝑋 ‘ 𝑥 ) · 0 ) = 0 ) ) |
| 72 |
69 71
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) = 0 → ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = 0 ) ) |
| 73 |
6
|
psrbagf |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 : 𝐼 ⟶ ℕ0 ) |
| 74 |
66 73
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑥 : 𝐼 ⟶ ℕ0 ) |
| 75 |
74
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) ∧ 𝑛 ∈ 𝐼 ) → ( 𝑥 ‘ 𝑛 ) ∈ ℕ0 ) |
| 76 |
6
|
psrbagf |
⊢ ( 𝑘 ∈ 𝐷 → 𝑘 : 𝐼 ⟶ ℕ0 ) |
| 77 |
52 76
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑘 : 𝐼 ⟶ ℕ0 ) |
| 78 |
77
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) ∧ 𝑛 ∈ 𝐼 ) → ( 𝑘 ‘ 𝑛 ) ∈ ℕ0 ) |
| 79 |
|
nn0cn |
⊢ ( ( 𝑥 ‘ 𝑛 ) ∈ ℕ0 → ( 𝑥 ‘ 𝑛 ) ∈ ℂ ) |
| 80 |
|
nn0cn |
⊢ ( ( 𝑘 ‘ 𝑛 ) ∈ ℕ0 → ( 𝑘 ‘ 𝑛 ) ∈ ℂ ) |
| 81 |
|
pncan3 |
⊢ ( ( ( 𝑥 ‘ 𝑛 ) ∈ ℂ ∧ ( 𝑘 ‘ 𝑛 ) ∈ ℂ ) → ( ( 𝑥 ‘ 𝑛 ) + ( ( 𝑘 ‘ 𝑛 ) − ( 𝑥 ‘ 𝑛 ) ) ) = ( 𝑘 ‘ 𝑛 ) ) |
| 82 |
79 80 81
|
syl2an |
⊢ ( ( ( 𝑥 ‘ 𝑛 ) ∈ ℕ0 ∧ ( 𝑘 ‘ 𝑛 ) ∈ ℕ0 ) → ( ( 𝑥 ‘ 𝑛 ) + ( ( 𝑘 ‘ 𝑛 ) − ( 𝑥 ‘ 𝑛 ) ) ) = ( 𝑘 ‘ 𝑛 ) ) |
| 83 |
75 78 82
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) ∧ 𝑛 ∈ 𝐼 ) → ( ( 𝑥 ‘ 𝑛 ) + ( ( 𝑘 ‘ 𝑛 ) − ( 𝑥 ‘ 𝑛 ) ) ) = ( 𝑘 ‘ 𝑛 ) ) |
| 84 |
83
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑛 ) + ( ( 𝑘 ‘ 𝑛 ) − ( 𝑥 ‘ 𝑛 ) ) ) ) = ( 𝑛 ∈ 𝐼 ↦ ( 𝑘 ‘ 𝑛 ) ) ) |
| 85 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝐼 ∈ 𝑊 ) |
| 86 |
|
ovexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) ∧ 𝑛 ∈ 𝐼 ) → ( ( 𝑘 ‘ 𝑛 ) − ( 𝑥 ‘ 𝑛 ) ) ∈ V ) |
| 87 |
74
|
feqmptd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑥 = ( 𝑛 ∈ 𝐼 ↦ ( 𝑥 ‘ 𝑛 ) ) ) |
| 88 |
77
|
feqmptd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑘 = ( 𝑛 ∈ 𝐼 ↦ ( 𝑘 ‘ 𝑛 ) ) ) |
| 89 |
85 78 75 88 87
|
offval2 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑥 ) = ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑛 ) − ( 𝑥 ‘ 𝑛 ) ) ) ) |
| 90 |
85 75 86 87 89
|
offval2 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑥 ∘f + ( 𝑘 ∘f − 𝑥 ) ) = ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑛 ) + ( ( 𝑘 ‘ 𝑛 ) − ( 𝑥 ‘ 𝑛 ) ) ) ) ) |
| 91 |
84 90 88
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑥 ∘f + ( 𝑘 ∘f − 𝑥 ) ) = 𝑘 ) |
| 92 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) |
| 93 |
91 92
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑥 ∘f + ( 𝑘 ∘f − 𝑥 ) ) ∈ ( 𝐷 ∖ 𝐴 ) ) |
| 94 |
93
|
eldifbd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ¬ ( 𝑥 ∘f + ( 𝑘 ∘f − 𝑥 ) ) ∈ 𝐴 ) |
| 95 |
|
ovres |
⊢ ( ( 𝑥 ∈ ( 𝑋 supp 0 ) ∧ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) → ( 𝑥 ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) ( 𝑘 ∘f − 𝑥 ) ) = ( 𝑥 ∘f + ( 𝑘 ∘f − 𝑥 ) ) ) |
| 96 |
|
fnovrn |
⊢ ( ( ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) Fn ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ∧ 𝑥 ∈ ( 𝑋 supp 0 ) ∧ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) → ( 𝑥 ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) ( 𝑘 ∘f − 𝑥 ) ) ∈ ran ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) ) |
| 97 |
96 24
|
eleqtrrdi |
⊢ ( ( ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) Fn ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ∧ 𝑥 ∈ ( 𝑋 supp 0 ) ∧ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) → ( 𝑥 ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) ( 𝑘 ∘f − 𝑥 ) ) ∈ 𝐴 ) |
| 98 |
35 97
|
mp3an1 |
⊢ ( ( 𝑥 ∈ ( 𝑋 supp 0 ) ∧ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) → ( 𝑥 ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) ( 𝑘 ∘f − 𝑥 ) ) ∈ 𝐴 ) |
| 99 |
95 98
|
eqeltrrd |
⊢ ( ( 𝑥 ∈ ( 𝑋 supp 0 ) ∧ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) → ( 𝑥 ∘f + ( 𝑘 ∘f − 𝑥 ) ) ∈ 𝐴 ) |
| 100 |
94 99
|
nsyl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ¬ ( 𝑥 ∈ ( 𝑋 supp 0 ) ∧ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) ) |
| 101 |
|
ianor |
⊢ ( ¬ ( 𝑥 ∈ ( 𝑋 supp 0 ) ∧ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) ↔ ( ¬ 𝑥 ∈ ( 𝑋 supp 0 ) ∨ ¬ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) ) |
| 102 |
100 101
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ¬ 𝑥 ∈ ( 𝑋 supp 0 ) ∨ ¬ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) ) |
| 103 |
|
eldif |
⊢ ( 𝑥 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ↔ ( 𝑥 ∈ 𝐷 ∧ ¬ 𝑥 ∈ ( 𝑋 supp 0 ) ) ) |
| 104 |
103
|
baib |
⊢ ( 𝑥 ∈ 𝐷 → ( 𝑥 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ↔ ¬ 𝑥 ∈ ( 𝑋 supp 0 ) ) ) |
| 105 |
66 104
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑥 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ↔ ¬ 𝑥 ∈ ( 𝑋 supp 0 ) ) ) |
| 106 |
|
ssidd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑋 supp 0 ) ⊆ ( 𝑋 supp 0 ) ) |
| 107 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
| 108 |
6 107
|
rabex2 |
⊢ 𝐷 ∈ V |
| 109 |
108
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝐷 ∈ V ) |
| 110 |
21
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 0 ∈ V ) |
| 111 |
65 106 109 110
|
suppssr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) ∧ 𝑥 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ) → ( 𝑋 ‘ 𝑥 ) = 0 ) |
| 112 |
111
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑥 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) → ( 𝑋 ‘ 𝑥 ) = 0 ) ) |
| 113 |
105 112
|
sylbird |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ¬ 𝑥 ∈ ( 𝑋 supp 0 ) → ( 𝑋 ‘ 𝑥 ) = 0 ) ) |
| 114 |
|
eldif |
⊢ ( ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝐷 ∖ ( 𝑌 supp 0 ) ) ↔ ( ( 𝑘 ∘f − 𝑥 ) ∈ 𝐷 ∧ ¬ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) ) |
| 115 |
114
|
baib |
⊢ ( ( 𝑘 ∘f − 𝑥 ) ∈ 𝐷 → ( ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝐷 ∖ ( 𝑌 supp 0 ) ) ↔ ¬ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) ) |
| 116 |
57 115
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝐷 ∖ ( 𝑌 supp 0 ) ) ↔ ¬ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) ) |
| 117 |
|
ssidd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑌 supp 0 ) ⊆ ( 𝑌 supp 0 ) ) |
| 118 |
50 117 109 110
|
suppssr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) ∧ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝐷 ∖ ( 𝑌 supp 0 ) ) ) → ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) = 0 ) |
| 119 |
118
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝐷 ∖ ( 𝑌 supp 0 ) ) → ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) = 0 ) ) |
| 120 |
116 119
|
sylbird |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ¬ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) → ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) = 0 ) ) |
| 121 |
113 120
|
orim12d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( ¬ 𝑥 ∈ ( 𝑋 supp 0 ) ∨ ¬ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) → ( ( 𝑋 ‘ 𝑥 ) = 0 ∨ ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) = 0 ) ) ) |
| 122 |
102 121
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑋 ‘ 𝑥 ) = 0 ∨ ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) = 0 ) ) |
| 123 |
63 72 122
|
mpjaod |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = 0 ) |
| 124 |
123
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) → ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ 0 ) ) |
| 125 |
124
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ 0 ) ) ) |
| 126 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) → 𝑅 ∈ Ring ) |
| 127 |
|
ringmnd |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) |
| 128 |
126 127
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) → 𝑅 ∈ Mnd ) |
| 129 |
6
|
psrbaglefi |
⊢ ( 𝑘 ∈ 𝐷 → { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ∈ Fin ) |
| 130 |
46 129
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) → { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ∈ Fin ) |
| 131 |
7
|
gsumz |
⊢ ( ( 𝑅 ∈ Mnd ∧ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ∈ Fin ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ 0 ) ) = 0 ) |
| 132 |
128 130 131
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ 0 ) ) = 0 ) |
| 133 |
47 125 132
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) → ( ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ‘ 𝑘 ) = 0 ) |
| 134 |
42 133
|
suppss |
⊢ ( 𝜑 → ( ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) supp 0 ) ⊆ 𝐴 ) |
| 135 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ∈ V ∧ Fun ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ∧ 0 ∈ V ) ∧ ( 𝐴 ∈ Fin ∧ ( ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) supp 0 ) ⊆ 𝐴 ) ) → ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) finSupp 0 ) |
| 136 |
18 20 22 40 134 135
|
syl32anc |
⊢ ( 𝜑 → ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) finSupp 0 ) |
| 137 |
2 1 12 7 3
|
mplelbas |
⊢ ( ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ∈ 𝑈 ↔ ( ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) finSupp 0 ) ) |
| 138 |
17 136 137
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ∈ 𝑈 ) |