Metamath Proof Explorer


Theorem psrelbasfun

Description: An element of the set of power series is a function. (Contributed by AV, 17-Jul-2019)

Ref Expression
Hypotheses psrelbasfun.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
psrelbasfun.b 𝐵 = ( Base ‘ 𝑆 )
Assertion psrelbasfun ( 𝑋𝐵 → Fun 𝑋 )

Proof

Step Hyp Ref Expression
1 psrelbasfun.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
2 psrelbasfun.b 𝐵 = ( Base ‘ 𝑆 )
3 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
4 eqid { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
5 id ( 𝑋𝐵𝑋𝐵 )
6 1 3 4 2 5 psrelbas ( 𝑋𝐵𝑋 : { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) )
7 6 ffund ( 𝑋𝐵 → Fun 𝑋 )