Description: An element of the set of power series is a function. (Contributed by AV, 17-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | psrelbasfun.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
psrelbasfun.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
Assertion | psrelbasfun | ⊢ ( 𝑋 ∈ 𝐵 → Fun 𝑋 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrelbasfun.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
2 | psrelbasfun.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
3 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
4 | eqid | ⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
5 | id | ⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵 ) | |
6 | 1 3 4 2 5 | psrelbas | ⊢ ( 𝑋 ∈ 𝐵 → 𝑋 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
7 | 6 | ffund | ⊢ ( 𝑋 ∈ 𝐵 → Fun 𝑋 ) |