Metamath Proof Explorer


Theorem psrelbasfun

Description: An element of the set of power series is a function. (Contributed by AV, 17-Jul-2019)

Ref Expression
Hypotheses psrelbasfun.s
|- S = ( I mPwSer R )
psrelbasfun.b
|- B = ( Base ` S )
Assertion psrelbasfun
|- ( X e. B -> Fun X )

Proof

Step Hyp Ref Expression
1 psrelbasfun.s
 |-  S = ( I mPwSer R )
2 psrelbasfun.b
 |-  B = ( Base ` S )
3 eqid
 |-  ( Base ` R ) = ( Base ` R )
4 eqid
 |-  { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin }
5 id
 |-  ( X e. B -> X e. B )
6 1 3 4 2 5 psrelbas
 |-  ( X e. B -> X : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` R ) )
7 6 ffund
 |-  ( X e. B -> Fun X )