Description: An element of the set of power series is a function. (Contributed by AV, 17-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | psrelbasfun.s | |- S = ( I mPwSer R ) |
|
psrelbasfun.b | |- B = ( Base ` S ) |
||
Assertion | psrelbasfun | |- ( X e. B -> Fun X ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrelbasfun.s | |- S = ( I mPwSer R ) |
|
2 | psrelbasfun.b | |- B = ( Base ` S ) |
|
3 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
4 | eqid | |- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
5 | id | |- ( X e. B -> X e. B ) |
|
6 | 1 3 4 2 5 | psrelbas | |- ( X e. B -> X : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` R ) ) |
7 | 6 | ffund | |- ( X e. B -> Fun X ) |