Step |
Hyp |
Ref |
Expression |
1 |
|
cply1binom.p |
|
2 |
|
cply1binom.x |
|
3 |
|
cply1binom.a |
|
4 |
|
cply1binom.m |
|
5 |
|
cply1binom.t |
|
6 |
|
cply1binom.g |
|
7 |
|
cply1binom.e |
|
8 |
|
lply1binomsc.k |
|
9 |
|
lply1binomsc.s |
|
10 |
|
lply1binomsc.h |
|
11 |
|
lply1binomsc.e |
|
12 |
|
eqid |
|
13 |
|
crngring |
|
14 |
1
|
ply1ring |
|
15 |
13 14
|
syl |
|
16 |
15
|
3ad2ant1 |
|
17 |
1
|
ply1lmod |
|
18 |
13 17
|
syl |
|
19 |
18
|
3ad2ant1 |
|
20 |
|
eqid |
|
21 |
|
eqid |
|
22 |
9 12 16 19 20 21
|
asclf |
|
23 |
1
|
ply1sca |
|
24 |
23
|
3ad2ant1 |
|
25 |
24
|
fveq2d |
|
26 |
8 25
|
eqtrid |
|
27 |
26
|
feq2d |
|
28 |
22 27
|
mpbird |
|
29 |
|
simp3 |
|
30 |
28 29
|
ffvelrnd |
|
31 |
1 2 3 4 5 6 7 21
|
lply1binom |
|
32 |
30 31
|
syld3an3 |
|
33 |
1
|
ply1assa |
|
34 |
33
|
3ad2ant1 |
|
35 |
34
|
adantr |
|
36 |
|
fznn0sub |
|
37 |
36
|
adantl |
|
38 |
23
|
fveq2d |
|
39 |
8 38
|
eqtrid |
|
40 |
39
|
eleq2d |
|
41 |
40
|
biimpa |
|
42 |
41
|
3adant2 |
|
43 |
42
|
adantr |
|
44 |
|
eqid |
|
45 |
21 44
|
ringidcl |
|
46 |
15 45
|
syl |
|
47 |
46
|
3ad2ant1 |
|
48 |
47
|
adantr |
|
49 |
|
eqid |
|
50 |
|
eqid |
|
51 |
|
eqid |
|
52 |
21 12 20 49 50 51 6 7
|
assamulgscm |
|
53 |
35 37 43 48 52
|
syl13anc |
|
54 |
23
|
fveq2d |
|
55 |
10 54
|
eqtrid |
|
56 |
55
|
fveq2d |
|
57 |
11 56
|
eqtrid |
|
58 |
57
|
3ad2ant1 |
|
59 |
58
|
adantr |
|
60 |
59
|
eqcomd |
|
61 |
60
|
oveqd |
|
62 |
6
|
ringmgp |
|
63 |
15 62
|
syl |
|
64 |
63
|
3ad2ant1 |
|
65 |
6 21
|
mgpbas |
|
66 |
6 44
|
ringidval |
|
67 |
65 7 66
|
mulgnn0z |
|
68 |
64 36 67
|
syl2an |
|
69 |
61 68
|
oveq12d |
|
70 |
53 69
|
eqtrd |
|
71 |
9 12 20 49 44
|
asclval |
|
72 |
43 71
|
syl |
|
73 |
72
|
oveq2d |
|
74 |
10
|
ringmgp |
|
75 |
13 74
|
syl |
|
76 |
75
|
3ad2ant1 |
|
77 |
76
|
adantr |
|
78 |
|
simpr |
|
79 |
10 8
|
mgpbas |
|
80 |
78 79
|
eleqtrdi |
|
81 |
80
|
3adant2 |
|
82 |
81
|
adantr |
|
83 |
|
eqid |
|
84 |
83 11
|
mulgnn0cl |
|
85 |
77 37 82 84
|
syl3anc |
|
86 |
24
|
adantr |
|
87 |
86
|
eqcomd |
|
88 |
87
|
fveq2d |
|
89 |
|
eqid |
|
90 |
10 89
|
mgpbas |
|
91 |
88 90
|
eqtrdi |
|
92 |
85 91
|
eleqtrrd |
|
93 |
9 12 20 49 44
|
asclval |
|
94 |
92 93
|
syl |
|
95 |
70 73 94
|
3eqtr4d |
|
96 |
95
|
oveq1d |
|
97 |
96
|
oveq2d |
|
98 |
97
|
mpteq2dva |
|
99 |
98
|
oveq2d |
|
100 |
32 99
|
eqtrd |
|