Metamath Proof Explorer


Theorem lply1binomsc

Description: The binomial theorem for linear polynomials (monic polynomials of degree 1) over commutative rings, expressed by an element of this ring: ( X + A ) ^ N is the sum from k = 0 to N of ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( X ^ k ) ) . (Contributed by AV, 25-Aug-2019)

Ref Expression
Hypotheses cply1binom.p P = Poly 1 R
cply1binom.x X = var 1 R
cply1binom.a + ˙ = + P
cply1binom.m × ˙ = P
cply1binom.t · ˙ = P
cply1binom.g G = mulGrp P
cply1binom.e × ˙ = G
lply1binomsc.k K = Base R
lply1binomsc.s S = algSc P
lply1binomsc.h H = mulGrp R
lply1binomsc.e E = H
Assertion lply1binomsc R CRing N 0 A K N × ˙ X + ˙ S A = P k = 0 N ( N k) · ˙ S N k E A × ˙ k × ˙ X

Proof

Step Hyp Ref Expression
1 cply1binom.p P = Poly 1 R
2 cply1binom.x X = var 1 R
3 cply1binom.a + ˙ = + P
4 cply1binom.m × ˙ = P
5 cply1binom.t · ˙ = P
6 cply1binom.g G = mulGrp P
7 cply1binom.e × ˙ = G
8 lply1binomsc.k K = Base R
9 lply1binomsc.s S = algSc P
10 lply1binomsc.h H = mulGrp R
11 lply1binomsc.e E = H
12 eqid Scalar P = Scalar P
13 crngring R CRing R Ring
14 1 ply1ring R Ring P Ring
15 13 14 syl R CRing P Ring
16 15 3ad2ant1 R CRing N 0 A K P Ring
17 1 ply1lmod R Ring P LMod
18 13 17 syl R CRing P LMod
19 18 3ad2ant1 R CRing N 0 A K P LMod
20 eqid Base Scalar P = Base Scalar P
21 eqid Base P = Base P
22 9 12 16 19 20 21 asclf R CRing N 0 A K S : Base Scalar P Base P
23 1 ply1sca R CRing R = Scalar P
24 23 3ad2ant1 R CRing N 0 A K R = Scalar P
25 24 fveq2d R CRing N 0 A K Base R = Base Scalar P
26 8 25 eqtrid R CRing N 0 A K K = Base Scalar P
27 26 feq2d R CRing N 0 A K S : K Base P S : Base Scalar P Base P
28 22 27 mpbird R CRing N 0 A K S : K Base P
29 simp3 R CRing N 0 A K A K
30 28 29 ffvelrnd R CRing N 0 A K S A Base P
31 1 2 3 4 5 6 7 21 lply1binom R CRing N 0 S A Base P N × ˙ X + ˙ S A = P k = 0 N ( N k) · ˙ N k × ˙ S A × ˙ k × ˙ X
32 30 31 syld3an3 R CRing N 0 A K N × ˙ X + ˙ S A = P k = 0 N ( N k) · ˙ N k × ˙ S A × ˙ k × ˙ X
33 1 ply1assa R CRing P AssAlg
34 33 3ad2ant1 R CRing N 0 A K P AssAlg
35 34 adantr R CRing N 0 A K k 0 N P AssAlg
36 fznn0sub k 0 N N k 0
37 36 adantl R CRing N 0 A K k 0 N N k 0
38 23 fveq2d R CRing Base R = Base Scalar P
39 8 38 eqtrid R CRing K = Base Scalar P
40 39 eleq2d R CRing A K A Base Scalar P
41 40 biimpa R CRing A K A Base Scalar P
42 41 3adant2 R CRing N 0 A K A Base Scalar P
43 42 adantr R CRing N 0 A K k 0 N A Base Scalar P
44 eqid 1 P = 1 P
45 21 44 ringidcl P Ring 1 P Base P
46 15 45 syl R CRing 1 P Base P
47 46 3ad2ant1 R CRing N 0 A K 1 P Base P
48 47 adantr R CRing N 0 A K k 0 N 1 P Base P
49 eqid P = P
50 eqid mulGrp Scalar P = mulGrp Scalar P
51 eqid mulGrp Scalar P = mulGrp Scalar P
52 21 12 20 49 50 51 6 7 assamulgscm P AssAlg N k 0 A Base Scalar P 1 P Base P N k × ˙ A P 1 P = N k mulGrp Scalar P A P N k × ˙ 1 P
53 35 37 43 48 52 syl13anc R CRing N 0 A K k 0 N N k × ˙ A P 1 P = N k mulGrp Scalar P A P N k × ˙ 1 P
54 23 fveq2d R CRing mulGrp R = mulGrp Scalar P
55 10 54 eqtrid R CRing H = mulGrp Scalar P
56 55 fveq2d R CRing H = mulGrp Scalar P
57 11 56 eqtrid R CRing E = mulGrp Scalar P
58 57 3ad2ant1 R CRing N 0 A K E = mulGrp Scalar P
59 58 adantr R CRing N 0 A K k 0 N E = mulGrp Scalar P
60 59 eqcomd R CRing N 0 A K k 0 N mulGrp Scalar P = E
61 60 oveqd R CRing N 0 A K k 0 N N k mulGrp Scalar P A = N k E A
62 6 ringmgp P Ring G Mnd
63 15 62 syl R CRing G Mnd
64 63 3ad2ant1 R CRing N 0 A K G Mnd
65 6 21 mgpbas Base P = Base G
66 6 44 ringidval 1 P = 0 G
67 65 7 66 mulgnn0z G Mnd N k 0 N k × ˙ 1 P = 1 P
68 64 36 67 syl2an R CRing N 0 A K k 0 N N k × ˙ 1 P = 1 P
69 61 68 oveq12d R CRing N 0 A K k 0 N N k mulGrp Scalar P A P N k × ˙ 1 P = N k E A P 1 P
70 53 69 eqtrd R CRing N 0 A K k 0 N N k × ˙ A P 1 P = N k E A P 1 P
71 9 12 20 49 44 asclval A Base Scalar P S A = A P 1 P
72 43 71 syl R CRing N 0 A K k 0 N S A = A P 1 P
73 72 oveq2d R CRing N 0 A K k 0 N N k × ˙ S A = N k × ˙ A P 1 P
74 10 ringmgp R Ring H Mnd
75 13 74 syl R CRing H Mnd
76 75 3ad2ant1 R CRing N 0 A K H Mnd
77 76 adantr R CRing N 0 A K k 0 N H Mnd
78 simpr R CRing A K A K
79 10 8 mgpbas K = Base H
80 78 79 eleqtrdi R CRing A K A Base H
81 80 3adant2 R CRing N 0 A K A Base H
82 81 adantr R CRing N 0 A K k 0 N A Base H
83 eqid Base H = Base H
84 83 11 mulgnn0cl H Mnd N k 0 A Base H N k E A Base H
85 77 37 82 84 syl3anc R CRing N 0 A K k 0 N N k E A Base H
86 24 adantr R CRing N 0 A K k 0 N R = Scalar P
87 86 eqcomd R CRing N 0 A K k 0 N Scalar P = R
88 87 fveq2d R CRing N 0 A K k 0 N Base Scalar P = Base R
89 eqid Base R = Base R
90 10 89 mgpbas Base R = Base H
91 88 90 eqtrdi R CRing N 0 A K k 0 N Base Scalar P = Base H
92 85 91 eleqtrrd R CRing N 0 A K k 0 N N k E A Base Scalar P
93 9 12 20 49 44 asclval N k E A Base Scalar P S N k E A = N k E A P 1 P
94 92 93 syl R CRing N 0 A K k 0 N S N k E A = N k E A P 1 P
95 70 73 94 3eqtr4d R CRing N 0 A K k 0 N N k × ˙ S A = S N k E A
96 95 oveq1d R CRing N 0 A K k 0 N N k × ˙ S A × ˙ k × ˙ X = S N k E A × ˙ k × ˙ X
97 96 oveq2d R CRing N 0 A K k 0 N ( N k) · ˙ N k × ˙ S A × ˙ k × ˙ X = ( N k) · ˙ S N k E A × ˙ k × ˙ X
98 97 mpteq2dva R CRing N 0 A K k 0 N ( N k) · ˙ N k × ˙ S A × ˙ k × ˙ X = k 0 N ( N k) · ˙ S N k E A × ˙ k × ˙ X
99 98 oveq2d R CRing N 0 A K P k = 0 N ( N k) · ˙ N k × ˙ S A × ˙ k × ˙ X = P k = 0 N ( N k) · ˙ S N k E A × ˙ k × ˙ X
100 32 99 eqtrd R CRing N 0 A K N × ˙ X + ˙ S A = P k = 0 N ( N k) · ˙ S N k E A × ˙ k × ˙ X