Description: Exponentiation of a scalar multiplication in an associative algebra: ( a .x. X ) ^ N = ( a ^ N ) .X. ( X ^ N ) . (Contributed by AV, 26-Aug-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | assamulgscm.v | |
|
assamulgscm.f | |
||
assamulgscm.b | |
||
assamulgscm.s | |
||
assamulgscm.g | |
||
assamulgscm.p | |
||
assamulgscm.h | |
||
assamulgscm.e | |
||
Assertion | assamulgscm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | assamulgscm.v | |
|
2 | assamulgscm.f | |
|
3 | assamulgscm.b | |
|
4 | assamulgscm.s | |
|
5 | assamulgscm.g | |
|
6 | assamulgscm.p | |
|
7 | assamulgscm.h | |
|
8 | assamulgscm.e | |
|
9 | oveq1 | |
|
10 | oveq1 | |
|
11 | oveq1 | |
|
12 | 10 11 | oveq12d | |
13 | 9 12 | eqeq12d | |
14 | 13 | imbi2d | |
15 | oveq1 | |
|
16 | oveq1 | |
|
17 | oveq1 | |
|
18 | 16 17 | oveq12d | |
19 | 15 18 | eqeq12d | |
20 | 19 | imbi2d | |
21 | oveq1 | |
|
22 | oveq1 | |
|
23 | oveq1 | |
|
24 | 22 23 | oveq12d | |
25 | 21 24 | eqeq12d | |
26 | 25 | imbi2d | |
27 | oveq1 | |
|
28 | oveq1 | |
|
29 | oveq1 | |
|
30 | 28 29 | oveq12d | |
31 | 27 30 | eqeq12d | |
32 | 31 | imbi2d | |
33 | 1 2 3 4 5 6 7 8 | assamulgscmlem1 | |
34 | 1 2 3 4 5 6 7 8 | assamulgscmlem2 | |
35 | 34 | a2d | |
36 | 14 20 26 32 33 35 | nn0ind | |
37 | 36 | exp4c | |
38 | 37 | 3imp | |
39 | 38 | impcom | |