Metamath Proof Explorer


Theorem assamulgscm

Description: Exponentiation of a scalar multiplication in an associative algebra: ( a .x. X ) ^ N = ( a ^ N ) .X. ( X ^ N ) . (Contributed by AV, 26-Aug-2019)

Ref Expression
Hypotheses assamulgscm.v V=BaseW
assamulgscm.f F=ScalarW
assamulgscm.b B=BaseF
assamulgscm.s ·˙=W
assamulgscm.g G=mulGrpF
assamulgscm.p ×˙=G
assamulgscm.h H=mulGrpW
assamulgscm.e E=H
Assertion assamulgscm WAssAlgN0ABXVNEA·˙X=N×˙A·˙NEX

Proof

Step Hyp Ref Expression
1 assamulgscm.v V=BaseW
2 assamulgscm.f F=ScalarW
3 assamulgscm.b B=BaseF
4 assamulgscm.s ·˙=W
5 assamulgscm.g G=mulGrpF
6 assamulgscm.p ×˙=G
7 assamulgscm.h H=mulGrpW
8 assamulgscm.e E=H
9 oveq1 x=0xEA·˙X=0EA·˙X
10 oveq1 x=0x×˙A=0×˙A
11 oveq1 x=0xEX=0EX
12 10 11 oveq12d x=0x×˙A·˙xEX=0×˙A·˙0EX
13 9 12 eqeq12d x=0xEA·˙X=x×˙A·˙xEX0EA·˙X=0×˙A·˙0EX
14 13 imbi2d x=0ABXVWAssAlgxEA·˙X=x×˙A·˙xEXABXVWAssAlg0EA·˙X=0×˙A·˙0EX
15 oveq1 x=yxEA·˙X=yEA·˙X
16 oveq1 x=yx×˙A=y×˙A
17 oveq1 x=yxEX=yEX
18 16 17 oveq12d x=yx×˙A·˙xEX=y×˙A·˙yEX
19 15 18 eqeq12d x=yxEA·˙X=x×˙A·˙xEXyEA·˙X=y×˙A·˙yEX
20 19 imbi2d x=yABXVWAssAlgxEA·˙X=x×˙A·˙xEXABXVWAssAlgyEA·˙X=y×˙A·˙yEX
21 oveq1 x=y+1xEA·˙X=y+1EA·˙X
22 oveq1 x=y+1x×˙A=y+1×˙A
23 oveq1 x=y+1xEX=y+1EX
24 22 23 oveq12d x=y+1x×˙A·˙xEX=y+1×˙A·˙y+1EX
25 21 24 eqeq12d x=y+1xEA·˙X=x×˙A·˙xEXy+1EA·˙X=y+1×˙A·˙y+1EX
26 25 imbi2d x=y+1ABXVWAssAlgxEA·˙X=x×˙A·˙xEXABXVWAssAlgy+1EA·˙X=y+1×˙A·˙y+1EX
27 oveq1 x=NxEA·˙X=NEA·˙X
28 oveq1 x=Nx×˙A=N×˙A
29 oveq1 x=NxEX=NEX
30 28 29 oveq12d x=Nx×˙A·˙xEX=N×˙A·˙NEX
31 27 30 eqeq12d x=NxEA·˙X=x×˙A·˙xEXNEA·˙X=N×˙A·˙NEX
32 31 imbi2d x=NABXVWAssAlgxEA·˙X=x×˙A·˙xEXABXVWAssAlgNEA·˙X=N×˙A·˙NEX
33 1 2 3 4 5 6 7 8 assamulgscmlem1 ABXVWAssAlg0EA·˙X=0×˙A·˙0EX
34 1 2 3 4 5 6 7 8 assamulgscmlem2 y0ABXVWAssAlgyEA·˙X=y×˙A·˙yEXy+1EA·˙X=y+1×˙A·˙y+1EX
35 34 a2d y0ABXVWAssAlgyEA·˙X=y×˙A·˙yEXABXVWAssAlgy+1EA·˙X=y+1×˙A·˙y+1EX
36 14 20 26 32 33 35 nn0ind N0ABXVWAssAlgNEA·˙X=N×˙A·˙NEX
37 36 exp4c N0ABXVWAssAlgNEA·˙X=N×˙A·˙NEX
38 37 3imp N0ABXVWAssAlgNEA·˙X=N×˙A·˙NEX
39 38 impcom WAssAlgN0ABXVNEA·˙X=N×˙A·˙NEX