| Step | Hyp | Ref | Expression | 
						
							| 1 |  | assamulgscm.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | assamulgscm.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 3 |  | assamulgscm.b | ⊢ 𝐵  =  ( Base ‘ 𝐹 ) | 
						
							| 4 |  | assamulgscm.s | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 5 |  | assamulgscm.g | ⊢ 𝐺  =  ( mulGrp ‘ 𝐹 ) | 
						
							| 6 |  | assamulgscm.p | ⊢  ↑   =  ( .g ‘ 𝐺 ) | 
						
							| 7 |  | assamulgscm.h | ⊢ 𝐻  =  ( mulGrp ‘ 𝑊 ) | 
						
							| 8 |  | assamulgscm.e | ⊢ 𝐸  =  ( .g ‘ 𝐻 ) | 
						
							| 9 |  | oveq1 | ⊢ ( 𝑥  =  0  →  ( 𝑥 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( 0 𝐸 ( 𝐴  ·  𝑋 ) ) ) | 
						
							| 10 |  | oveq1 | ⊢ ( 𝑥  =  0  →  ( 𝑥  ↑  𝐴 )  =  ( 0  ↑  𝐴 ) ) | 
						
							| 11 |  | oveq1 | ⊢ ( 𝑥  =  0  →  ( 𝑥 𝐸 𝑋 )  =  ( 0 𝐸 𝑋 ) ) | 
						
							| 12 | 10 11 | oveq12d | ⊢ ( 𝑥  =  0  →  ( ( 𝑥  ↑  𝐴 )  ·  ( 𝑥 𝐸 𝑋 ) )  =  ( ( 0  ↑  𝐴 )  ·  ( 0 𝐸 𝑋 ) ) ) | 
						
							| 13 | 9 12 | eqeq12d | ⊢ ( 𝑥  =  0  →  ( ( 𝑥 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( 𝑥  ↑  𝐴 )  ·  ( 𝑥 𝐸 𝑋 ) )  ↔  ( 0 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( 0  ↑  𝐴 )  ·  ( 0 𝐸 𝑋 ) ) ) ) | 
						
							| 14 | 13 | imbi2d | ⊢ ( 𝑥  =  0  →  ( ( ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg )  →  ( 𝑥 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( 𝑥  ↑  𝐴 )  ·  ( 𝑥 𝐸 𝑋 ) ) )  ↔  ( ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg )  →  ( 0 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( 0  ↑  𝐴 )  ·  ( 0 𝐸 𝑋 ) ) ) ) ) | 
						
							| 15 |  | oveq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( 𝑦 𝐸 ( 𝐴  ·  𝑋 ) ) ) | 
						
							| 16 |  | oveq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ↑  𝐴 )  =  ( 𝑦  ↑  𝐴 ) ) | 
						
							| 17 |  | oveq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥 𝐸 𝑋 )  =  ( 𝑦 𝐸 𝑋 ) ) | 
						
							| 18 | 16 17 | oveq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  ↑  𝐴 )  ·  ( 𝑥 𝐸 𝑋 ) )  =  ( ( 𝑦  ↑  𝐴 )  ·  ( 𝑦 𝐸 𝑋 ) ) ) | 
						
							| 19 | 15 18 | eqeq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( 𝑥  ↑  𝐴 )  ·  ( 𝑥 𝐸 𝑋 ) )  ↔  ( 𝑦 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( 𝑦  ↑  𝐴 )  ·  ( 𝑦 𝐸 𝑋 ) ) ) ) | 
						
							| 20 | 19 | imbi2d | ⊢ ( 𝑥  =  𝑦  →  ( ( ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg )  →  ( 𝑥 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( 𝑥  ↑  𝐴 )  ·  ( 𝑥 𝐸 𝑋 ) ) )  ↔  ( ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg )  →  ( 𝑦 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( 𝑦  ↑  𝐴 )  ·  ( 𝑦 𝐸 𝑋 ) ) ) ) ) | 
						
							| 21 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( 𝑥 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( 𝑦  +  1 ) 𝐸 ( 𝐴  ·  𝑋 ) ) ) | 
						
							| 22 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( 𝑥  ↑  𝐴 )  =  ( ( 𝑦  +  1 )  ↑  𝐴 ) ) | 
						
							| 23 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( 𝑥 𝐸 𝑋 )  =  ( ( 𝑦  +  1 ) 𝐸 𝑋 ) ) | 
						
							| 24 | 22 23 | oveq12d | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( ( 𝑥  ↑  𝐴 )  ·  ( 𝑥 𝐸 𝑋 ) )  =  ( ( ( 𝑦  +  1 )  ↑  𝐴 )  ·  ( ( 𝑦  +  1 ) 𝐸 𝑋 ) ) ) | 
						
							| 25 | 21 24 | eqeq12d | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( ( 𝑥 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( 𝑥  ↑  𝐴 )  ·  ( 𝑥 𝐸 𝑋 ) )  ↔  ( ( 𝑦  +  1 ) 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( ( 𝑦  +  1 )  ↑  𝐴 )  ·  ( ( 𝑦  +  1 ) 𝐸 𝑋 ) ) ) ) | 
						
							| 26 | 25 | imbi2d | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( ( ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg )  →  ( 𝑥 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( 𝑥  ↑  𝐴 )  ·  ( 𝑥 𝐸 𝑋 ) ) )  ↔  ( ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg )  →  ( ( 𝑦  +  1 ) 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( ( 𝑦  +  1 )  ↑  𝐴 )  ·  ( ( 𝑦  +  1 ) 𝐸 𝑋 ) ) ) ) ) | 
						
							| 27 |  | oveq1 | ⊢ ( 𝑥  =  𝑁  →  ( 𝑥 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( 𝑁 𝐸 ( 𝐴  ·  𝑋 ) ) ) | 
						
							| 28 |  | oveq1 | ⊢ ( 𝑥  =  𝑁  →  ( 𝑥  ↑  𝐴 )  =  ( 𝑁  ↑  𝐴 ) ) | 
						
							| 29 |  | oveq1 | ⊢ ( 𝑥  =  𝑁  →  ( 𝑥 𝐸 𝑋 )  =  ( 𝑁 𝐸 𝑋 ) ) | 
						
							| 30 | 28 29 | oveq12d | ⊢ ( 𝑥  =  𝑁  →  ( ( 𝑥  ↑  𝐴 )  ·  ( 𝑥 𝐸 𝑋 ) )  =  ( ( 𝑁  ↑  𝐴 )  ·  ( 𝑁 𝐸 𝑋 ) ) ) | 
						
							| 31 | 27 30 | eqeq12d | ⊢ ( 𝑥  =  𝑁  →  ( ( 𝑥 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( 𝑥  ↑  𝐴 )  ·  ( 𝑥 𝐸 𝑋 ) )  ↔  ( 𝑁 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( 𝑁  ↑  𝐴 )  ·  ( 𝑁 𝐸 𝑋 ) ) ) ) | 
						
							| 32 | 31 | imbi2d | ⊢ ( 𝑥  =  𝑁  →  ( ( ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg )  →  ( 𝑥 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( 𝑥  ↑  𝐴 )  ·  ( 𝑥 𝐸 𝑋 ) ) )  ↔  ( ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg )  →  ( 𝑁 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( 𝑁  ↑  𝐴 )  ·  ( 𝑁 𝐸 𝑋 ) ) ) ) ) | 
						
							| 33 | 1 2 3 4 5 6 7 8 | assamulgscmlem1 | ⊢ ( ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg )  →  ( 0 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( 0  ↑  𝐴 )  ·  ( 0 𝐸 𝑋 ) ) ) | 
						
							| 34 | 1 2 3 4 5 6 7 8 | assamulgscmlem2 | ⊢ ( 𝑦  ∈  ℕ0  →  ( ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg )  →  ( ( 𝑦 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( 𝑦  ↑  𝐴 )  ·  ( 𝑦 𝐸 𝑋 ) )  →  ( ( 𝑦  +  1 ) 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( ( 𝑦  +  1 )  ↑  𝐴 )  ·  ( ( 𝑦  +  1 ) 𝐸 𝑋 ) ) ) ) ) | 
						
							| 35 | 34 | a2d | ⊢ ( 𝑦  ∈  ℕ0  →  ( ( ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg )  →  ( 𝑦 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( 𝑦  ↑  𝐴 )  ·  ( 𝑦 𝐸 𝑋 ) ) )  →  ( ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg )  →  ( ( 𝑦  +  1 ) 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( ( 𝑦  +  1 )  ↑  𝐴 )  ·  ( ( 𝑦  +  1 ) 𝐸 𝑋 ) ) ) ) ) | 
						
							| 36 | 14 20 26 32 33 35 | nn0ind | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg )  →  ( 𝑁 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( 𝑁  ↑  𝐴 )  ·  ( 𝑁 𝐸 𝑋 ) ) ) ) | 
						
							| 37 | 36 | exp4c | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝐴  ∈  𝐵  →  ( 𝑋  ∈  𝑉  →  ( 𝑊  ∈  AssAlg  →  ( 𝑁 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( 𝑁  ↑  𝐴 )  ·  ( 𝑁 𝐸 𝑋 ) ) ) ) ) ) | 
						
							| 38 | 37 | 3imp | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  →  ( 𝑊  ∈  AssAlg  →  ( 𝑁 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( 𝑁  ↑  𝐴 )  ·  ( 𝑁 𝐸 𝑋 ) ) ) ) | 
						
							| 39 | 38 | impcom | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  ( 𝑁  ∈  ℕ0  ∧  𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 ) )  →  ( 𝑁 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( 𝑁  ↑  𝐴 )  ·  ( 𝑁 𝐸 𝑋 ) ) ) |