| Step | Hyp | Ref | Expression | 
						
							| 1 |  | assamulgscm.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | assamulgscm.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 3 |  | assamulgscm.b | ⊢ 𝐵  =  ( Base ‘ 𝐹 ) | 
						
							| 4 |  | assamulgscm.s | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 5 |  | assamulgscm.g | ⊢ 𝐺  =  ( mulGrp ‘ 𝐹 ) | 
						
							| 6 |  | assamulgscm.p | ⊢  ↑   =  ( .g ‘ 𝐺 ) | 
						
							| 7 |  | assamulgscm.h | ⊢ 𝐻  =  ( mulGrp ‘ 𝑊 ) | 
						
							| 8 |  | assamulgscm.e | ⊢ 𝐸  =  ( .g ‘ 𝐻 ) | 
						
							| 9 |  | assaring | ⊢ ( 𝑊  ∈  AssAlg  →  𝑊  ∈  Ring ) | 
						
							| 10 | 7 | ringmgp | ⊢ ( 𝑊  ∈  Ring  →  𝐻  ∈  Mnd ) | 
						
							| 11 | 9 10 | syl | ⊢ ( 𝑊  ∈  AssAlg  →  𝐻  ∈  Mnd ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg )  →  𝐻  ∈  Mnd ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg ) )  →  𝐻  ∈  Mnd ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg ) )  ∧  ( 𝑦 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( 𝑦  ↑  𝐴 )  ·  ( 𝑦 𝐸 𝑋 ) ) )  →  𝐻  ∈  Mnd ) | 
						
							| 15 |  | simpll | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg ) )  ∧  ( 𝑦 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( 𝑦  ↑  𝐴 )  ·  ( 𝑦 𝐸 𝑋 ) ) )  →  𝑦  ∈  ℕ0 ) | 
						
							| 16 |  | assalmod | ⊢ ( 𝑊  ∈  AssAlg  →  𝑊  ∈  LMod ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg )  →  𝑊  ∈  LMod ) | 
						
							| 18 |  | simpll | ⊢ ( ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg )  →  𝐴  ∈  𝐵 ) | 
						
							| 19 |  | simplr | ⊢ ( ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg )  →  𝑋  ∈  𝑉 ) | 
						
							| 20 | 1 2 4 3 | lmodvscl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  →  ( 𝐴  ·  𝑋 )  ∈  𝑉 ) | 
						
							| 21 | 17 18 19 20 | syl3anc | ⊢ ( ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg )  →  ( 𝐴  ·  𝑋 )  ∈  𝑉 ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg ) )  →  ( 𝐴  ·  𝑋 )  ∈  𝑉 ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg ) )  ∧  ( 𝑦 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( 𝑦  ↑  𝐴 )  ·  ( 𝑦 𝐸 𝑋 ) ) )  →  ( 𝐴  ·  𝑋 )  ∈  𝑉 ) | 
						
							| 24 | 7 1 | mgpbas | ⊢ 𝑉  =  ( Base ‘ 𝐻 ) | 
						
							| 25 |  | eqid | ⊢ ( .r ‘ 𝑊 )  =  ( .r ‘ 𝑊 ) | 
						
							| 26 | 7 25 | mgpplusg | ⊢ ( .r ‘ 𝑊 )  =  ( +g ‘ 𝐻 ) | 
						
							| 27 | 24 8 26 | mulgnn0p1 | ⊢ ( ( 𝐻  ∈  Mnd  ∧  𝑦  ∈  ℕ0  ∧  ( 𝐴  ·  𝑋 )  ∈  𝑉 )  →  ( ( 𝑦  +  1 ) 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( 𝑦 𝐸 ( 𝐴  ·  𝑋 ) ) ( .r ‘ 𝑊 ) ( 𝐴  ·  𝑋 ) ) ) | 
						
							| 28 | 14 15 23 27 | syl3anc | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg ) )  ∧  ( 𝑦 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( 𝑦  ↑  𝐴 )  ·  ( 𝑦 𝐸 𝑋 ) ) )  →  ( ( 𝑦  +  1 ) 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( 𝑦 𝐸 ( 𝐴  ·  𝑋 ) ) ( .r ‘ 𝑊 ) ( 𝐴  ·  𝑋 ) ) ) | 
						
							| 29 |  | oveq1 | ⊢ ( ( 𝑦 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( 𝑦  ↑  𝐴 )  ·  ( 𝑦 𝐸 𝑋 ) )  →  ( ( 𝑦 𝐸 ( 𝐴  ·  𝑋 ) ) ( .r ‘ 𝑊 ) ( 𝐴  ·  𝑋 ) )  =  ( ( ( 𝑦  ↑  𝐴 )  ·  ( 𝑦 𝐸 𝑋 ) ) ( .r ‘ 𝑊 ) ( 𝐴  ·  𝑋 ) ) ) | 
						
							| 30 |  | simprr | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg ) )  →  𝑊  ∈  AssAlg ) | 
						
							| 31 | 2 | eqcomi | ⊢ ( Scalar ‘ 𝑊 )  =  𝐹 | 
						
							| 32 | 31 | fveq2i | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  ( Base ‘ 𝐹 ) | 
						
							| 33 | 5 32 | mgpbas | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  ( Base ‘ 𝐺 ) | 
						
							| 34 | 2 | assasca | ⊢ ( 𝑊  ∈  AssAlg  →  𝐹  ∈  Ring ) | 
						
							| 35 | 5 | ringmgp | ⊢ ( 𝐹  ∈  Ring  →  𝐺  ∈  Mnd ) | 
						
							| 36 | 34 35 | syl | ⊢ ( 𝑊  ∈  AssAlg  →  𝐺  ∈  Mnd ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg )  →  𝐺  ∈  Mnd ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg ) )  →  𝐺  ∈  Mnd ) | 
						
							| 39 |  | simpl | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg ) )  →  𝑦  ∈  ℕ0 ) | 
						
							| 40 | 3 | a1i | ⊢ ( 𝑊  ∈  AssAlg  →  𝐵  =  ( Base ‘ 𝐹 ) ) | 
						
							| 41 | 2 | fveq2i | ⊢ ( Base ‘ 𝐹 )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 42 | 40 41 | eqtrdi | ⊢ ( 𝑊  ∈  AssAlg  →  𝐵  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 43 | 42 | eleq2d | ⊢ ( 𝑊  ∈  AssAlg  →  ( 𝐴  ∈  𝐵  ↔  𝐴  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 44 | 43 | biimpcd | ⊢ ( 𝐴  ∈  𝐵  →  ( 𝑊  ∈  AssAlg  →  𝐴  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  →  ( 𝑊  ∈  AssAlg  →  𝐴  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 46 | 45 | imp | ⊢ ( ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg )  →  𝐴  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 47 | 46 | adantl | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg ) )  →  𝐴  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 48 | 33 6 38 39 47 | mulgnn0cld | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg ) )  →  ( 𝑦  ↑  𝐴 )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 49 |  | simprlr | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg ) )  →  𝑋  ∈  𝑉 ) | 
						
							| 50 | 24 8 13 39 49 | mulgnn0cld | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg ) )  →  ( 𝑦 𝐸 𝑋 )  ∈  𝑉 ) | 
						
							| 51 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 52 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 53 | 1 51 52 4 25 | assaass | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  ( ( 𝑦  ↑  𝐴 )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  ( 𝑦 𝐸 𝑋 )  ∈  𝑉  ∧  ( 𝐴  ·  𝑋 )  ∈  𝑉 ) )  →  ( ( ( 𝑦  ↑  𝐴 )  ·  ( 𝑦 𝐸 𝑋 ) ) ( .r ‘ 𝑊 ) ( 𝐴  ·  𝑋 ) )  =  ( ( 𝑦  ↑  𝐴 )  ·  ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) ( 𝐴  ·  𝑋 ) ) ) ) | 
						
							| 54 | 30 48 50 22 53 | syl13anc | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg ) )  →  ( ( ( 𝑦  ↑  𝐴 )  ·  ( 𝑦 𝐸 𝑋 ) ) ( .r ‘ 𝑊 ) ( 𝐴  ·  𝑋 ) )  =  ( ( 𝑦  ↑  𝐴 )  ·  ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) ( 𝐴  ·  𝑋 ) ) ) ) | 
						
							| 55 | 1 51 52 4 25 | assaassr | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  ( 𝐴  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  ( 𝑦 𝐸 𝑋 )  ∈  𝑉  ∧  𝑋  ∈  𝑉 ) )  →  ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) ( 𝐴  ·  𝑋 ) )  =  ( 𝐴  ·  ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) 𝑋 ) ) ) | 
						
							| 56 | 30 47 50 49 55 | syl13anc | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg ) )  →  ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) ( 𝐴  ·  𝑋 ) )  =  ( 𝐴  ·  ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) 𝑋 ) ) ) | 
						
							| 57 | 56 | oveq2d | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg ) )  →  ( ( 𝑦  ↑  𝐴 )  ·  ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) ( 𝐴  ·  𝑋 ) ) )  =  ( ( 𝑦  ↑  𝐴 )  ·  ( 𝐴  ·  ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) 𝑋 ) ) ) ) | 
						
							| 58 | 24 8 26 | mulgnn0p1 | ⊢ ( ( 𝐻  ∈  Mnd  ∧  𝑦  ∈  ℕ0  ∧  𝑋  ∈  𝑉 )  →  ( ( 𝑦  +  1 ) 𝐸 𝑋 )  =  ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) 𝑋 ) ) | 
						
							| 59 | 13 39 49 58 | syl3anc | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg ) )  →  ( ( 𝑦  +  1 ) 𝐸 𝑋 )  =  ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) 𝑋 ) ) | 
						
							| 60 | 59 | eqcomd | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg ) )  →  ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) 𝑋 )  =  ( ( 𝑦  +  1 ) 𝐸 𝑋 ) ) | 
						
							| 61 | 60 | oveq2d | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg ) )  →  ( 𝐴  ·  ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) 𝑋 ) )  =  ( 𝐴  ·  ( ( 𝑦  +  1 ) 𝐸 𝑋 ) ) ) | 
						
							| 62 | 61 | oveq2d | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg ) )  →  ( ( 𝑦  ↑  𝐴 )  ·  ( 𝐴  ·  ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) 𝑋 ) ) )  =  ( ( 𝑦  ↑  𝐴 )  ·  ( 𝐴  ·  ( ( 𝑦  +  1 ) 𝐸 𝑋 ) ) ) ) | 
						
							| 63 | 17 | adantl | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg ) )  →  𝑊  ∈  LMod ) | 
						
							| 64 |  | peano2nn0 | ⊢ ( 𝑦  ∈  ℕ0  →  ( 𝑦  +  1 )  ∈  ℕ0 ) | 
						
							| 65 | 64 | adantr | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg ) )  →  ( 𝑦  +  1 )  ∈  ℕ0 ) | 
						
							| 66 | 24 8 13 65 49 | mulgnn0cld | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg ) )  →  ( ( 𝑦  +  1 ) 𝐸 𝑋 )  ∈  𝑉 ) | 
						
							| 67 |  | eqid | ⊢ ( .r ‘ ( Scalar ‘ 𝑊 ) )  =  ( .r ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 68 | 1 51 4 52 67 | lmodvsass | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( ( 𝑦  ↑  𝐴 )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝐴  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  ( ( 𝑦  +  1 ) 𝐸 𝑋 )  ∈  𝑉 ) )  →  ( ( ( 𝑦  ↑  𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 )  ·  ( ( 𝑦  +  1 ) 𝐸 𝑋 ) )  =  ( ( 𝑦  ↑  𝐴 )  ·  ( 𝐴  ·  ( ( 𝑦  +  1 ) 𝐸 𝑋 ) ) ) ) | 
						
							| 69 | 68 | eqcomd | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( ( 𝑦  ↑  𝐴 )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝐴  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  ( ( 𝑦  +  1 ) 𝐸 𝑋 )  ∈  𝑉 ) )  →  ( ( 𝑦  ↑  𝐴 )  ·  ( 𝐴  ·  ( ( 𝑦  +  1 ) 𝐸 𝑋 ) ) )  =  ( ( ( 𝑦  ↑  𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 )  ·  ( ( 𝑦  +  1 ) 𝐸 𝑋 ) ) ) | 
						
							| 70 | 63 48 47 66 69 | syl13anc | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg ) )  →  ( ( 𝑦  ↑  𝐴 )  ·  ( 𝐴  ·  ( ( 𝑦  +  1 ) 𝐸 𝑋 ) ) )  =  ( ( ( 𝑦  ↑  𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 )  ·  ( ( 𝑦  +  1 ) 𝐸 𝑋 ) ) ) | 
						
							| 71 | 57 62 70 | 3eqtrd | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg ) )  →  ( ( 𝑦  ↑  𝐴 )  ·  ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) ( 𝐴  ·  𝑋 ) ) )  =  ( ( ( 𝑦  ↑  𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 )  ·  ( ( 𝑦  +  1 ) 𝐸 𝑋 ) ) ) | 
						
							| 72 |  | simprll | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg ) )  →  𝐴  ∈  𝐵 ) | 
						
							| 73 | 5 3 | mgpbas | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 74 |  | eqid | ⊢ ( .r ‘ 𝐹 )  =  ( .r ‘ 𝐹 ) | 
						
							| 75 | 5 74 | mgpplusg | ⊢ ( .r ‘ 𝐹 )  =  ( +g ‘ 𝐺 ) | 
						
							| 76 | 73 6 75 | mulgnn0p1 | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑦  ∈  ℕ0  ∧  𝐴  ∈  𝐵 )  →  ( ( 𝑦  +  1 )  ↑  𝐴 )  =  ( ( 𝑦  ↑  𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) ) | 
						
							| 77 | 38 39 72 76 | syl3anc | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg ) )  →  ( ( 𝑦  +  1 )  ↑  𝐴 )  =  ( ( 𝑦  ↑  𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) ) | 
						
							| 78 | 2 | a1i | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg ) )  →  𝐹  =  ( Scalar ‘ 𝑊 ) ) | 
						
							| 79 | 78 | fveq2d | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg ) )  →  ( .r ‘ 𝐹 )  =  ( .r ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 80 | 79 | oveqd | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg ) )  →  ( ( 𝑦  ↑  𝐴 ) ( .r ‘ 𝐹 ) 𝐴 )  =  ( ( 𝑦  ↑  𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 ) ) | 
						
							| 81 | 77 80 | eqtrd | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg ) )  →  ( ( 𝑦  +  1 )  ↑  𝐴 )  =  ( ( 𝑦  ↑  𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 ) ) | 
						
							| 82 | 81 | eqcomd | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg ) )  →  ( ( 𝑦  ↑  𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 )  =  ( ( 𝑦  +  1 )  ↑  𝐴 ) ) | 
						
							| 83 | 82 | oveq1d | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg ) )  →  ( ( ( 𝑦  ↑  𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 )  ·  ( ( 𝑦  +  1 ) 𝐸 𝑋 ) )  =  ( ( ( 𝑦  +  1 )  ↑  𝐴 )  ·  ( ( 𝑦  +  1 ) 𝐸 𝑋 ) ) ) | 
						
							| 84 | 54 71 83 | 3eqtrd | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg ) )  →  ( ( ( 𝑦  ↑  𝐴 )  ·  ( 𝑦 𝐸 𝑋 ) ) ( .r ‘ 𝑊 ) ( 𝐴  ·  𝑋 ) )  =  ( ( ( 𝑦  +  1 )  ↑  𝐴 )  ·  ( ( 𝑦  +  1 ) 𝐸 𝑋 ) ) ) | 
						
							| 85 | 29 84 | sylan9eqr | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg ) )  ∧  ( 𝑦 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( 𝑦  ↑  𝐴 )  ·  ( 𝑦 𝐸 𝑋 ) ) )  →  ( ( 𝑦 𝐸 ( 𝐴  ·  𝑋 ) ) ( .r ‘ 𝑊 ) ( 𝐴  ·  𝑋 ) )  =  ( ( ( 𝑦  +  1 )  ↑  𝐴 )  ·  ( ( 𝑦  +  1 ) 𝐸 𝑋 ) ) ) | 
						
							| 86 | 28 85 | eqtrd | ⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg ) )  ∧  ( 𝑦 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( 𝑦  ↑  𝐴 )  ·  ( 𝑦 𝐸 𝑋 ) ) )  →  ( ( 𝑦  +  1 ) 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( ( 𝑦  +  1 )  ↑  𝐴 )  ·  ( ( 𝑦  +  1 ) 𝐸 𝑋 ) ) ) | 
						
							| 87 | 86 | exp31 | ⊢ ( 𝑦  ∈  ℕ0  →  ( ( ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 )  ∧  𝑊  ∈  AssAlg )  →  ( ( 𝑦 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( 𝑦  ↑  𝐴 )  ·  ( 𝑦 𝐸 𝑋 ) )  →  ( ( 𝑦  +  1 ) 𝐸 ( 𝐴  ·  𝑋 ) )  =  ( ( ( 𝑦  +  1 )  ↑  𝐴 )  ·  ( ( 𝑦  +  1 ) 𝐸 𝑋 ) ) ) ) ) |