| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm2mpval.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | pm2mpval.c |  |-  C = ( N Mat P ) | 
						
							| 3 |  | pm2mpval.b |  |-  B = ( Base ` C ) | 
						
							| 4 |  | pm2mpval.m |  |-  .* = ( .s ` Q ) | 
						
							| 5 |  | pm2mpval.e |  |-  .^ = ( .g ` ( mulGrp ` Q ) ) | 
						
							| 6 |  | pm2mpval.x |  |-  X = ( var1 ` A ) | 
						
							| 7 |  | pm2mpval.a |  |-  A = ( N Mat R ) | 
						
							| 8 |  | pm2mpval.q |  |-  Q = ( Poly1 ` A ) | 
						
							| 9 |  | pm2mpval.t |  |-  T = ( N pMatToMatPoly R ) | 
						
							| 10 | 1 2 | pmatring |  |-  ( ( N e. Fin /\ R e. Ring ) -> C e. Ring ) | 
						
							| 11 |  | eqid |  |-  ( 1r ` C ) = ( 1r ` C ) | 
						
							| 12 | 3 11 | ringidcl |  |-  ( C e. Ring -> ( 1r ` C ) e. B ) | 
						
							| 13 | 10 12 | syl |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` C ) e. B ) | 
						
							| 14 | 1 2 3 4 5 6 7 8 9 | pm2mpfval |  |-  ( ( N e. Fin /\ R e. Ring /\ ( 1r ` C ) e. B ) -> ( T ` ( 1r ` C ) ) = ( Q gsum ( k e. NN0 |-> ( ( ( 1r ` C ) decompPMat k ) .* ( k .^ X ) ) ) ) ) | 
						
							| 15 | 13 14 | mpd3an3 |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( T ` ( 1r ` C ) ) = ( Q gsum ( k e. NN0 |-> ( ( ( 1r ` C ) decompPMat k ) .* ( k .^ X ) ) ) ) ) | 
						
							| 16 |  | eqid |  |-  ( 0g ` A ) = ( 0g ` A ) | 
						
							| 17 |  | eqid |  |-  ( 1r ` A ) = ( 1r ` A ) | 
						
							| 18 | 1 2 11 7 16 17 | decpmatid |  |-  ( ( N e. Fin /\ R e. Ring /\ k e. NN0 ) -> ( ( 1r ` C ) decompPMat k ) = if ( k = 0 , ( 1r ` A ) , ( 0g ` A ) ) ) | 
						
							| 19 | 18 | 3expa |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ k e. NN0 ) -> ( ( 1r ` C ) decompPMat k ) = if ( k = 0 , ( 1r ` A ) , ( 0g ` A ) ) ) | 
						
							| 20 | 19 | oveq1d |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ k e. NN0 ) -> ( ( ( 1r ` C ) decompPMat k ) .* ( k .^ X ) ) = ( if ( k = 0 , ( 1r ` A ) , ( 0g ` A ) ) .* ( k .^ X ) ) ) | 
						
							| 21 | 20 | mpteq2dva |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( k e. NN0 |-> ( ( ( 1r ` C ) decompPMat k ) .* ( k .^ X ) ) ) = ( k e. NN0 |-> ( if ( k = 0 , ( 1r ` A ) , ( 0g ` A ) ) .* ( k .^ X ) ) ) ) | 
						
							| 22 | 21 | oveq2d |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( Q gsum ( k e. NN0 |-> ( ( ( 1r ` C ) decompPMat k ) .* ( k .^ X ) ) ) ) = ( Q gsum ( k e. NN0 |-> ( if ( k = 0 , ( 1r ` A ) , ( 0g ` A ) ) .* ( k .^ X ) ) ) ) ) | 
						
							| 23 |  | ovif |  |-  ( if ( k = 0 , ( 1r ` A ) , ( 0g ` A ) ) .* ( k .^ X ) ) = if ( k = 0 , ( ( 1r ` A ) .* ( k .^ X ) ) , ( ( 0g ` A ) .* ( k .^ X ) ) ) | 
						
							| 24 | 7 | matring |  |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) | 
						
							| 25 | 8 | ply1sca |  |-  ( A e. Ring -> A = ( Scalar ` Q ) ) | 
						
							| 26 | 24 25 | syl |  |-  ( ( N e. Fin /\ R e. Ring ) -> A = ( Scalar ` Q ) ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ k e. NN0 ) -> A = ( Scalar ` Q ) ) | 
						
							| 28 | 27 | fveq2d |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ k e. NN0 ) -> ( 1r ` A ) = ( 1r ` ( Scalar ` Q ) ) ) | 
						
							| 29 | 28 | oveq1d |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ k e. NN0 ) -> ( ( 1r ` A ) .* ( k .^ X ) ) = ( ( 1r ` ( Scalar ` Q ) ) .* ( k .^ X ) ) ) | 
						
							| 30 | 8 | ply1lmod |  |-  ( A e. Ring -> Q e. LMod ) | 
						
							| 31 | 24 30 | syl |  |-  ( ( N e. Fin /\ R e. Ring ) -> Q e. LMod ) | 
						
							| 32 |  | eqid |  |-  ( mulGrp ` Q ) = ( mulGrp ` Q ) | 
						
							| 33 |  | eqid |  |-  ( Base ` Q ) = ( Base ` Q ) | 
						
							| 34 | 8 6 32 5 33 | ply1moncl |  |-  ( ( A e. Ring /\ k e. NN0 ) -> ( k .^ X ) e. ( Base ` Q ) ) | 
						
							| 35 | 24 34 | sylan |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ k e. NN0 ) -> ( k .^ X ) e. ( Base ` Q ) ) | 
						
							| 36 |  | eqid |  |-  ( Scalar ` Q ) = ( Scalar ` Q ) | 
						
							| 37 |  | eqid |  |-  ( 1r ` ( Scalar ` Q ) ) = ( 1r ` ( Scalar ` Q ) ) | 
						
							| 38 | 33 36 4 37 | lmodvs1 |  |-  ( ( Q e. LMod /\ ( k .^ X ) e. ( Base ` Q ) ) -> ( ( 1r ` ( Scalar ` Q ) ) .* ( k .^ X ) ) = ( k .^ X ) ) | 
						
							| 39 | 31 35 38 | syl2an2r |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ k e. NN0 ) -> ( ( 1r ` ( Scalar ` Q ) ) .* ( k .^ X ) ) = ( k .^ X ) ) | 
						
							| 40 | 29 39 | eqtrd |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ k e. NN0 ) -> ( ( 1r ` A ) .* ( k .^ X ) ) = ( k .^ X ) ) | 
						
							| 41 | 27 | fveq2d |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ k e. NN0 ) -> ( 0g ` A ) = ( 0g ` ( Scalar ` Q ) ) ) | 
						
							| 42 | 41 | oveq1d |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ k e. NN0 ) -> ( ( 0g ` A ) .* ( k .^ X ) ) = ( ( 0g ` ( Scalar ` Q ) ) .* ( k .^ X ) ) ) | 
						
							| 43 |  | eqid |  |-  ( 0g ` ( Scalar ` Q ) ) = ( 0g ` ( Scalar ` Q ) ) | 
						
							| 44 |  | eqid |  |-  ( 0g ` Q ) = ( 0g ` Q ) | 
						
							| 45 | 33 36 4 43 44 | lmod0vs |  |-  ( ( Q e. LMod /\ ( k .^ X ) e. ( Base ` Q ) ) -> ( ( 0g ` ( Scalar ` Q ) ) .* ( k .^ X ) ) = ( 0g ` Q ) ) | 
						
							| 46 | 31 35 45 | syl2an2r |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ k e. NN0 ) -> ( ( 0g ` ( Scalar ` Q ) ) .* ( k .^ X ) ) = ( 0g ` Q ) ) | 
						
							| 47 | 42 46 | eqtrd |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ k e. NN0 ) -> ( ( 0g ` A ) .* ( k .^ X ) ) = ( 0g ` Q ) ) | 
						
							| 48 | 40 47 | ifeq12d |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ k e. NN0 ) -> if ( k = 0 , ( ( 1r ` A ) .* ( k .^ X ) ) , ( ( 0g ` A ) .* ( k .^ X ) ) ) = if ( k = 0 , ( k .^ X ) , ( 0g ` Q ) ) ) | 
						
							| 49 | 23 48 | eqtrid |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ k e. NN0 ) -> ( if ( k = 0 , ( 1r ` A ) , ( 0g ` A ) ) .* ( k .^ X ) ) = if ( k = 0 , ( k .^ X ) , ( 0g ` Q ) ) ) | 
						
							| 50 | 49 | mpteq2dva |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( k e. NN0 |-> ( if ( k = 0 , ( 1r ` A ) , ( 0g ` A ) ) .* ( k .^ X ) ) ) = ( k e. NN0 |-> if ( k = 0 , ( k .^ X ) , ( 0g ` Q ) ) ) ) | 
						
							| 51 | 50 | oveq2d |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( Q gsum ( k e. NN0 |-> ( if ( k = 0 , ( 1r ` A ) , ( 0g ` A ) ) .* ( k .^ X ) ) ) ) = ( Q gsum ( k e. NN0 |-> if ( k = 0 , ( k .^ X ) , ( 0g ` Q ) ) ) ) ) | 
						
							| 52 | 8 | ply1ring |  |-  ( A e. Ring -> Q e. Ring ) | 
						
							| 53 |  | ringmnd |  |-  ( Q e. Ring -> Q e. Mnd ) | 
						
							| 54 | 24 52 53 | 3syl |  |-  ( ( N e. Fin /\ R e. Ring ) -> Q e. Mnd ) | 
						
							| 55 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 56 | 55 | a1i |  |-  ( ( N e. Fin /\ R e. Ring ) -> NN0 e. _V ) | 
						
							| 57 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 58 | 57 | a1i |  |-  ( ( N e. Fin /\ R e. Ring ) -> 0 e. NN0 ) | 
						
							| 59 |  | eqid |  |-  ( k e. NN0 |-> if ( k = 0 , ( k .^ X ) , ( 0g ` Q ) ) ) = ( k e. NN0 |-> if ( k = 0 , ( k .^ X ) , ( 0g ` Q ) ) ) | 
						
							| 60 | 35 | ralrimiva |  |-  ( ( N e. Fin /\ R e. Ring ) -> A. k e. NN0 ( k .^ X ) e. ( Base ` Q ) ) | 
						
							| 61 | 44 54 56 58 59 60 | gsummpt1n0 |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( Q gsum ( k e. NN0 |-> if ( k = 0 , ( k .^ X ) , ( 0g ` Q ) ) ) ) = [_ 0 / k ]_ ( k .^ X ) ) | 
						
							| 62 |  | c0ex |  |-  0 e. _V | 
						
							| 63 |  | csbov1g |  |-  ( 0 e. _V -> [_ 0 / k ]_ ( k .^ X ) = ( [_ 0 / k ]_ k .^ X ) ) | 
						
							| 64 | 62 63 | mp1i |  |-  ( ( N e. Fin /\ R e. Ring ) -> [_ 0 / k ]_ ( k .^ X ) = ( [_ 0 / k ]_ k .^ X ) ) | 
						
							| 65 |  | csbvarg |  |-  ( 0 e. _V -> [_ 0 / k ]_ k = 0 ) | 
						
							| 66 | 62 65 | mp1i |  |-  ( ( N e. Fin /\ R e. Ring ) -> [_ 0 / k ]_ k = 0 ) | 
						
							| 67 | 66 | oveq1d |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( [_ 0 / k ]_ k .^ X ) = ( 0 .^ X ) ) | 
						
							| 68 | 8 6 32 5 | ply1idvr1 |  |-  ( A e. Ring -> ( 0 .^ X ) = ( 1r ` Q ) ) | 
						
							| 69 | 24 68 | syl |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( 0 .^ X ) = ( 1r ` Q ) ) | 
						
							| 70 | 64 67 69 | 3eqtrd |  |-  ( ( N e. Fin /\ R e. Ring ) -> [_ 0 / k ]_ ( k .^ X ) = ( 1r ` Q ) ) | 
						
							| 71 | 51 61 70 | 3eqtrd |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( Q gsum ( k e. NN0 |-> ( if ( k = 0 , ( 1r ` A ) , ( 0g ` A ) ) .* ( k .^ X ) ) ) ) = ( 1r ` Q ) ) | 
						
							| 72 | 15 22 71 | 3eqtrd |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( T ` ( 1r ` C ) ) = ( 1r ` Q ) ) |