| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm2mpval.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | pm2mpval.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | pm2mpval.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 4 |  | pm2mpval.m | ⊢  ∗   =  (  ·𝑠  ‘ 𝑄 ) | 
						
							| 5 |  | pm2mpval.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑄 ) ) | 
						
							| 6 |  | pm2mpval.x | ⊢ 𝑋  =  ( var1 ‘ 𝐴 ) | 
						
							| 7 |  | pm2mpval.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 8 |  | pm2mpval.q | ⊢ 𝑄  =  ( Poly1 ‘ 𝐴 ) | 
						
							| 9 |  | pm2mpval.t | ⊢ 𝑇  =  ( 𝑁  pMatToMatPoly  𝑅 ) | 
						
							| 10 | 1 2 | pmatring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐶  ∈  Ring ) | 
						
							| 11 |  | eqid | ⊢ ( 1r ‘ 𝐶 )  =  ( 1r ‘ 𝐶 ) | 
						
							| 12 | 3 11 | ringidcl | ⊢ ( 𝐶  ∈  Ring  →  ( 1r ‘ 𝐶 )  ∈  𝐵 ) | 
						
							| 13 | 10 12 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 1r ‘ 𝐶 )  ∈  𝐵 ) | 
						
							| 14 | 1 2 3 4 5 6 7 8 9 | pm2mpfval | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 1r ‘ 𝐶 )  ∈  𝐵 )  →  ( 𝑇 ‘ ( 1r ‘ 𝐶 ) )  =  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( ( 1r ‘ 𝐶 )  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) | 
						
							| 15 | 13 14 | mpd3an3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑇 ‘ ( 1r ‘ 𝐶 ) )  =  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( ( 1r ‘ 𝐶 )  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) | 
						
							| 16 |  | eqid | ⊢ ( 0g ‘ 𝐴 )  =  ( 0g ‘ 𝐴 ) | 
						
							| 17 |  | eqid | ⊢ ( 1r ‘ 𝐴 )  =  ( 1r ‘ 𝐴 ) | 
						
							| 18 | 1 2 11 7 16 17 | decpmatid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑘  ∈  ℕ0 )  →  ( ( 1r ‘ 𝐶 )  decompPMat  𝑘 )  =  if ( 𝑘  =  0 ,  ( 1r ‘ 𝐴 ) ,  ( 0g ‘ 𝐴 ) ) ) | 
						
							| 19 | 18 | 3expa | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 1r ‘ 𝐶 )  decompPMat  𝑘 )  =  if ( 𝑘  =  0 ,  ( 1r ‘ 𝐴 ) ,  ( 0g ‘ 𝐴 ) ) ) | 
						
							| 20 | 19 | oveq1d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 1r ‘ 𝐶 )  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) )  =  ( if ( 𝑘  =  0 ,  ( 1r ‘ 𝐴 ) ,  ( 0g ‘ 𝐴 ) )  ∗  ( 𝑘  ↑  𝑋 ) ) ) | 
						
							| 21 | 20 | mpteq2dva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( ( 1r ‘ 𝐶 )  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( if ( 𝑘  =  0 ,  ( 1r ‘ 𝐴 ) ,  ( 0g ‘ 𝐴 ) )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) | 
						
							| 22 | 21 | oveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( ( 1r ‘ 𝐶 )  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) )  =  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( if ( 𝑘  =  0 ,  ( 1r ‘ 𝐴 ) ,  ( 0g ‘ 𝐴 ) )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) | 
						
							| 23 |  | ovif | ⊢ ( if ( 𝑘  =  0 ,  ( 1r ‘ 𝐴 ) ,  ( 0g ‘ 𝐴 ) )  ∗  ( 𝑘  ↑  𝑋 ) )  =  if ( 𝑘  =  0 ,  ( ( 1r ‘ 𝐴 )  ∗  ( 𝑘  ↑  𝑋 ) ) ,  ( ( 0g ‘ 𝐴 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) | 
						
							| 24 | 7 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 25 | 8 | ply1sca | ⊢ ( 𝐴  ∈  Ring  →  𝐴  =  ( Scalar ‘ 𝑄 ) ) | 
						
							| 26 | 24 25 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  =  ( Scalar ‘ 𝑄 ) ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑘  ∈  ℕ0 )  →  𝐴  =  ( Scalar ‘ 𝑄 ) ) | 
						
							| 28 | 27 | fveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑘  ∈  ℕ0 )  →  ( 1r ‘ 𝐴 )  =  ( 1r ‘ ( Scalar ‘ 𝑄 ) ) ) | 
						
							| 29 | 28 | oveq1d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 1r ‘ 𝐴 )  ∗  ( 𝑘  ↑  𝑋 ) )  =  ( ( 1r ‘ ( Scalar ‘ 𝑄 ) )  ∗  ( 𝑘  ↑  𝑋 ) ) ) | 
						
							| 30 | 8 | ply1lmod | ⊢ ( 𝐴  ∈  Ring  →  𝑄  ∈  LMod ) | 
						
							| 31 | 24 30 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑄  ∈  LMod ) | 
						
							| 32 |  | eqid | ⊢ ( mulGrp ‘ 𝑄 )  =  ( mulGrp ‘ 𝑄 ) | 
						
							| 33 |  | eqid | ⊢ ( Base ‘ 𝑄 )  =  ( Base ‘ 𝑄 ) | 
						
							| 34 | 8 6 32 5 33 | ply1moncl | ⊢ ( ( 𝐴  ∈  Ring  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘  ↑  𝑋 )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 35 | 24 34 | sylan | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘  ↑  𝑋 )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 36 |  | eqid | ⊢ ( Scalar ‘ 𝑄 )  =  ( Scalar ‘ 𝑄 ) | 
						
							| 37 |  | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝑄 ) )  =  ( 1r ‘ ( Scalar ‘ 𝑄 ) ) | 
						
							| 38 | 33 36 4 37 | lmodvs1 | ⊢ ( ( 𝑄  ∈  LMod  ∧  ( 𝑘  ↑  𝑋 )  ∈  ( Base ‘ 𝑄 ) )  →  ( ( 1r ‘ ( Scalar ‘ 𝑄 ) )  ∗  ( 𝑘  ↑  𝑋 ) )  =  ( 𝑘  ↑  𝑋 ) ) | 
						
							| 39 | 31 35 38 | syl2an2r | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 1r ‘ ( Scalar ‘ 𝑄 ) )  ∗  ( 𝑘  ↑  𝑋 ) )  =  ( 𝑘  ↑  𝑋 ) ) | 
						
							| 40 | 29 39 | eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 1r ‘ 𝐴 )  ∗  ( 𝑘  ↑  𝑋 ) )  =  ( 𝑘  ↑  𝑋 ) ) | 
						
							| 41 | 27 | fveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑘  ∈  ℕ0 )  →  ( 0g ‘ 𝐴 )  =  ( 0g ‘ ( Scalar ‘ 𝑄 ) ) ) | 
						
							| 42 | 41 | oveq1d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 0g ‘ 𝐴 )  ∗  ( 𝑘  ↑  𝑋 ) )  =  ( ( 0g ‘ ( Scalar ‘ 𝑄 ) )  ∗  ( 𝑘  ↑  𝑋 ) ) ) | 
						
							| 43 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑄 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑄 ) ) | 
						
							| 44 |  | eqid | ⊢ ( 0g ‘ 𝑄 )  =  ( 0g ‘ 𝑄 ) | 
						
							| 45 | 33 36 4 43 44 | lmod0vs | ⊢ ( ( 𝑄  ∈  LMod  ∧  ( 𝑘  ↑  𝑋 )  ∈  ( Base ‘ 𝑄 ) )  →  ( ( 0g ‘ ( Scalar ‘ 𝑄 ) )  ∗  ( 𝑘  ↑  𝑋 ) )  =  ( 0g ‘ 𝑄 ) ) | 
						
							| 46 | 31 35 45 | syl2an2r | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 0g ‘ ( Scalar ‘ 𝑄 ) )  ∗  ( 𝑘  ↑  𝑋 ) )  =  ( 0g ‘ 𝑄 ) ) | 
						
							| 47 | 42 46 | eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 0g ‘ 𝐴 )  ∗  ( 𝑘  ↑  𝑋 ) )  =  ( 0g ‘ 𝑄 ) ) | 
						
							| 48 | 40 47 | ifeq12d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑘  ∈  ℕ0 )  →  if ( 𝑘  =  0 ,  ( ( 1r ‘ 𝐴 )  ∗  ( 𝑘  ↑  𝑋 ) ) ,  ( ( 0g ‘ 𝐴 )  ∗  ( 𝑘  ↑  𝑋 ) ) )  =  if ( 𝑘  =  0 ,  ( 𝑘  ↑  𝑋 ) ,  ( 0g ‘ 𝑄 ) ) ) | 
						
							| 49 | 23 48 | eqtrid | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑘  ∈  ℕ0 )  →  ( if ( 𝑘  =  0 ,  ( 1r ‘ 𝐴 ) ,  ( 0g ‘ 𝐴 ) )  ∗  ( 𝑘  ↑  𝑋 ) )  =  if ( 𝑘  =  0 ,  ( 𝑘  ↑  𝑋 ) ,  ( 0g ‘ 𝑄 ) ) ) | 
						
							| 50 | 49 | mpteq2dva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑘  ∈  ℕ0  ↦  ( if ( 𝑘  =  0 ,  ( 1r ‘ 𝐴 ) ,  ( 0g ‘ 𝐴 ) )  ∗  ( 𝑘  ↑  𝑋 ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( 𝑘  ↑  𝑋 ) ,  ( 0g ‘ 𝑄 ) ) ) ) | 
						
							| 51 | 50 | oveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( if ( 𝑘  =  0 ,  ( 1r ‘ 𝐴 ) ,  ( 0g ‘ 𝐴 ) )  ∗  ( 𝑘  ↑  𝑋 ) ) ) )  =  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( 𝑘  ↑  𝑋 ) ,  ( 0g ‘ 𝑄 ) ) ) ) ) | 
						
							| 52 | 8 | ply1ring | ⊢ ( 𝐴  ∈  Ring  →  𝑄  ∈  Ring ) | 
						
							| 53 |  | ringmnd | ⊢ ( 𝑄  ∈  Ring  →  𝑄  ∈  Mnd ) | 
						
							| 54 | 24 52 53 | 3syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑄  ∈  Mnd ) | 
						
							| 55 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 56 | 55 | a1i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ℕ0  ∈  V ) | 
						
							| 57 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 58 | 57 | a1i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  0  ∈  ℕ0 ) | 
						
							| 59 |  | eqid | ⊢ ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( 𝑘  ↑  𝑋 ) ,  ( 0g ‘ 𝑄 ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( 𝑘  ↑  𝑋 ) ,  ( 0g ‘ 𝑄 ) ) ) | 
						
							| 60 | 35 | ralrimiva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ∀ 𝑘  ∈  ℕ0 ( 𝑘  ↑  𝑋 )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 61 | 44 54 56 58 59 60 | gsummpt1n0 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( 𝑘  ↑  𝑋 ) ,  ( 0g ‘ 𝑄 ) ) ) )  =  ⦋ 0  /  𝑘 ⦌ ( 𝑘  ↑  𝑋 ) ) | 
						
							| 62 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 63 |  | csbov1g | ⊢ ( 0  ∈  V  →  ⦋ 0  /  𝑘 ⦌ ( 𝑘  ↑  𝑋 )  =  ( ⦋ 0  /  𝑘 ⦌ 𝑘  ↑  𝑋 ) ) | 
						
							| 64 | 62 63 | mp1i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ⦋ 0  /  𝑘 ⦌ ( 𝑘  ↑  𝑋 )  =  ( ⦋ 0  /  𝑘 ⦌ 𝑘  ↑  𝑋 ) ) | 
						
							| 65 |  | csbvarg | ⊢ ( 0  ∈  V  →  ⦋ 0  /  𝑘 ⦌ 𝑘  =  0 ) | 
						
							| 66 | 62 65 | mp1i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ⦋ 0  /  𝑘 ⦌ 𝑘  =  0 ) | 
						
							| 67 | 66 | oveq1d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( ⦋ 0  /  𝑘 ⦌ 𝑘  ↑  𝑋 )  =  ( 0  ↑  𝑋 ) ) | 
						
							| 68 | 8 6 32 5 | ply1idvr1 | ⊢ ( 𝐴  ∈  Ring  →  ( 0  ↑  𝑋 )  =  ( 1r ‘ 𝑄 ) ) | 
						
							| 69 | 24 68 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 0  ↑  𝑋 )  =  ( 1r ‘ 𝑄 ) ) | 
						
							| 70 | 64 67 69 | 3eqtrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ⦋ 0  /  𝑘 ⦌ ( 𝑘  ↑  𝑋 )  =  ( 1r ‘ 𝑄 ) ) | 
						
							| 71 | 51 61 70 | 3eqtrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( if ( 𝑘  =  0 ,  ( 1r ‘ 𝐴 ) ,  ( 0g ‘ 𝐴 ) )  ∗  ( 𝑘  ↑  𝑋 ) ) ) )  =  ( 1r ‘ 𝑄 ) ) | 
						
							| 72 | 15 22 71 | 3eqtrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑇 ‘ ( 1r ‘ 𝐶 ) )  =  ( 1r ‘ 𝑄 ) ) |