| Step | Hyp | Ref | Expression | 
						
							| 1 |  | decpmatid.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | decpmatid.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | decpmatid.i | ⊢ 𝐼  =  ( 1r ‘ 𝐶 ) | 
						
							| 4 |  | decpmatid.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 5 |  | decpmatid.0 | ⊢  0   =  ( 0g ‘ 𝐴 ) | 
						
							| 6 |  | decpmatid.1 | ⊢  1   =  ( 1r ‘ 𝐴 ) | 
						
							| 7 | 1 2 | pmatring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐶  ∈  Ring ) | 
						
							| 8 | 7 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  →  𝐶  ∈  Ring ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) | 
						
							| 10 | 9 3 | ringidcl | ⊢ ( 𝐶  ∈  Ring  →  𝐼  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 11 | 8 10 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  →  𝐼  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 12 |  | simp3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  →  𝐾  ∈  ℕ0 ) | 
						
							| 13 | 2 9 | decpmatval | ⊢ ( ( 𝐼  ∈  ( Base ‘ 𝐶 )  ∧  𝐾  ∈  ℕ0 )  →  ( 𝐼  decompPMat  𝐾 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝐼 𝑗 ) ) ‘ 𝐾 ) ) ) | 
						
							| 14 | 11 12 13 | syl2anc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  →  ( 𝐼  decompPMat  𝐾 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝐼 𝑗 ) ) ‘ 𝐾 ) ) ) | 
						
							| 15 |  | eqid | ⊢ ( 0g ‘ 𝑃 )  =  ( 0g ‘ 𝑃 ) | 
						
							| 16 |  | eqid | ⊢ ( 1r ‘ 𝑃 )  =  ( 1r ‘ 𝑃 ) | 
						
							| 17 |  | simp11 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑁  ∈  Fin ) | 
						
							| 18 |  | simp12 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑅  ∈  Ring ) | 
						
							| 19 |  | simp2 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑖  ∈  𝑁 ) | 
						
							| 20 |  | simp3 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑗  ∈  𝑁 ) | 
						
							| 21 | 1 2 15 16 17 18 19 20 3 | pmat1ovd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖 𝐼 𝑗 )  =  if ( 𝑖  =  𝑗 ,  ( 1r ‘ 𝑃 ) ,  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 22 | 21 | fveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( coe1 ‘ ( 𝑖 𝐼 𝑗 ) )  =  ( coe1 ‘ if ( 𝑖  =  𝑗 ,  ( 1r ‘ 𝑃 ) ,  ( 0g ‘ 𝑃 ) ) ) ) | 
						
							| 23 | 22 | fveq1d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( coe1 ‘ ( 𝑖 𝐼 𝑗 ) ) ‘ 𝐾 )  =  ( ( coe1 ‘ if ( 𝑖  =  𝑗 ,  ( 1r ‘ 𝑃 ) ,  ( 0g ‘ 𝑃 ) ) ) ‘ 𝐾 ) ) | 
						
							| 24 |  | fvif | ⊢ ( coe1 ‘ if ( 𝑖  =  𝑗 ,  ( 1r ‘ 𝑃 ) ,  ( 0g ‘ 𝑃 ) ) )  =  if ( 𝑖  =  𝑗 ,  ( coe1 ‘ ( 1r ‘ 𝑃 ) ) ,  ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ) | 
						
							| 25 | 24 | fveq1i | ⊢ ( ( coe1 ‘ if ( 𝑖  =  𝑗 ,  ( 1r ‘ 𝑃 ) ,  ( 0g ‘ 𝑃 ) ) ) ‘ 𝐾 )  =  ( if ( 𝑖  =  𝑗 ,  ( coe1 ‘ ( 1r ‘ 𝑃 ) ) ,  ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ) ‘ 𝐾 ) | 
						
							| 26 |  | iffv | ⊢ ( if ( 𝑖  =  𝑗 ,  ( coe1 ‘ ( 1r ‘ 𝑃 ) ) ,  ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ) ‘ 𝐾 )  =  if ( 𝑖  =  𝑗 ,  ( ( coe1 ‘ ( 1r ‘ 𝑃 ) ) ‘ 𝐾 ) ,  ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐾 ) ) | 
						
							| 27 | 25 26 | eqtri | ⊢ ( ( coe1 ‘ if ( 𝑖  =  𝑗 ,  ( 1r ‘ 𝑃 ) ,  ( 0g ‘ 𝑃 ) ) ) ‘ 𝐾 )  =  if ( 𝑖  =  𝑗 ,  ( ( coe1 ‘ ( 1r ‘ 𝑃 ) ) ‘ 𝐾 ) ,  ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐾 ) ) | 
						
							| 28 |  | eqid | ⊢ ( var1 ‘ 𝑅 )  =  ( var1 ‘ 𝑅 ) | 
						
							| 29 |  | eqid | ⊢ ( mulGrp ‘ 𝑃 )  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 30 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) )  =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 31 | 1 28 29 30 | ply1idvr1 | ⊢ ( 𝑅  ∈  Ring  →  ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) )  =  ( 1r ‘ 𝑃 ) ) | 
						
							| 32 | 31 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  →  ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) )  =  ( 1r ‘ 𝑃 ) ) | 
						
							| 33 | 32 | eqcomd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  →  ( 1r ‘ 𝑃 )  =  ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) | 
						
							| 34 | 33 | fveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  →  ( coe1 ‘ ( 1r ‘ 𝑃 ) )  =  ( coe1 ‘ ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) | 
						
							| 35 | 34 | fveq1d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 1r ‘ 𝑃 ) ) ‘ 𝐾 )  =  ( ( coe1 ‘ ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ‘ 𝐾 ) ) | 
						
							| 36 | 1 | ply1lmod | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  LMod ) | 
						
							| 37 | 36 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  →  𝑃  ∈  LMod ) | 
						
							| 38 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 39 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 40 | 1 28 29 30 39 | ply1moncl | ⊢ ( ( 𝑅  ∈  Ring  ∧  0  ∈  ℕ0 )  →  ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 41 | 38 40 | mpan2 | ⊢ ( 𝑅  ∈  Ring  →  ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 42 | 41 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  →  ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 43 |  | eqid | ⊢ ( Scalar ‘ 𝑃 )  =  ( Scalar ‘ 𝑃 ) | 
						
							| 44 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑃 )  =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 45 |  | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝑃 ) )  =  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) | 
						
							| 46 | 39 43 44 45 | lmodvs1 | ⊢ ( ( 𝑃  ∈  LMod  ∧  ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) )  ∈  ( Base ‘ 𝑃 ) )  →  ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) )  =  ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) | 
						
							| 47 | 37 42 46 | syl2anc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  →  ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) )  =  ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) | 
						
							| 48 | 47 | eqcomd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  →  ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) )  =  ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) | 
						
							| 49 | 48 | fveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  →  ( coe1 ‘ ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) )  =  ( coe1 ‘ ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) | 
						
							| 50 | 49 | fveq1d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ‘ 𝐾 )  =  ( ( coe1 ‘ ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ‘ 𝐾 ) ) | 
						
							| 51 |  | simp2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  →  𝑅  ∈  Ring ) | 
						
							| 52 | 1 | ply1sca | ⊢ ( 𝑅  ∈  Ring  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 53 | 52 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 54 | 53 | eqcomd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  →  ( Scalar ‘ 𝑃 )  =  𝑅 ) | 
						
							| 55 | 54 | fveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  →  ( 1r ‘ ( Scalar ‘ 𝑃 ) )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 56 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 57 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 58 | 56 57 | ringidcl | ⊢ ( 𝑅  ∈  Ring  →  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 59 | 58 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  →  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 60 | 55 59 | eqeltrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  →  ( 1r ‘ ( Scalar ‘ 𝑃 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 61 | 38 | a1i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  →  0  ∈  ℕ0 ) | 
						
							| 62 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 63 | 62 56 1 28 44 29 30 | coe1tm | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 1r ‘ ( Scalar ‘ 𝑃 ) )  ∈  ( Base ‘ 𝑅 )  ∧  0  ∈  ℕ0 )  →  ( coe1 ‘ ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ,  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 64 | 51 60 61 63 | syl3anc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  →  ( coe1 ‘ ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ,  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 65 |  | eqeq1 | ⊢ ( 𝑘  =  𝐾  →  ( 𝑘  =  0  ↔  𝐾  =  0 ) ) | 
						
							| 66 | 65 | ifbid | ⊢ ( 𝑘  =  𝐾  →  if ( 𝑘  =  0 ,  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ,  ( 0g ‘ 𝑅 ) )  =  if ( 𝐾  =  0 ,  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ,  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 67 | 66 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  ∧  𝑘  =  𝐾 )  →  if ( 𝑘  =  0 ,  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ,  ( 0g ‘ 𝑅 ) )  =  if ( 𝐾  =  0 ,  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ,  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 68 |  | fvex | ⊢ ( 1r ‘ ( Scalar ‘ 𝑃 ) )  ∈  V | 
						
							| 69 |  | fvex | ⊢ ( 0g ‘ 𝑅 )  ∈  V | 
						
							| 70 | 68 69 | ifex | ⊢ if ( 𝐾  =  0 ,  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ,  ( 0g ‘ 𝑅 ) )  ∈  V | 
						
							| 71 | 70 | a1i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  →  if ( 𝐾  =  0 ,  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ,  ( 0g ‘ 𝑅 ) )  ∈  V ) | 
						
							| 72 | 64 67 12 71 | fvmptd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  →  ( ( coe1 ‘ ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) (  ·𝑠  ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ‘ 𝐾 )  =  if ( 𝐾  =  0 ,  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ,  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 73 | 35 50 72 | 3eqtrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 1r ‘ 𝑃 ) ) ‘ 𝐾 )  =  if ( 𝐾  =  0 ,  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ,  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 74 | 1 15 62 | coe1z | ⊢ ( 𝑅  ∈  Ring  →  ( coe1 ‘ ( 0g ‘ 𝑃 ) )  =  ( ℕ0  ×  { ( 0g ‘ 𝑅 ) } ) ) | 
						
							| 75 | 74 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  →  ( coe1 ‘ ( 0g ‘ 𝑃 ) )  =  ( ℕ0  ×  { ( 0g ‘ 𝑅 ) } ) ) | 
						
							| 76 | 75 | fveq1d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐾 )  =  ( ( ℕ0  ×  { ( 0g ‘ 𝑅 ) } ) ‘ 𝐾 ) ) | 
						
							| 77 | 69 | a1i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  →  ( 0g ‘ 𝑅 )  ∈  V ) | 
						
							| 78 |  | fvconst2g | ⊢ ( ( ( 0g ‘ 𝑅 )  ∈  V  ∧  𝐾  ∈  ℕ0 )  →  ( ( ℕ0  ×  { ( 0g ‘ 𝑅 ) } ) ‘ 𝐾 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 79 | 77 12 78 | syl2anc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  →  ( ( ℕ0  ×  { ( 0g ‘ 𝑅 ) } ) ‘ 𝐾 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 80 | 76 79 | eqtrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐾 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 81 | 73 80 | ifeq12d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  →  if ( 𝑖  =  𝑗 ,  ( ( coe1 ‘ ( 1r ‘ 𝑃 ) ) ‘ 𝐾 ) ,  ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐾 ) )  =  if ( 𝑖  =  𝑗 ,  if ( 𝐾  =  0 ,  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ,  ( 0g ‘ 𝑅 ) ) ,  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 82 | 81 | 3ad2ant1 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  if ( 𝑖  =  𝑗 ,  ( ( coe1 ‘ ( 1r ‘ 𝑃 ) ) ‘ 𝐾 ) ,  ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐾 ) )  =  if ( 𝑖  =  𝑗 ,  if ( 𝐾  =  0 ,  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ,  ( 0g ‘ 𝑅 ) ) ,  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 83 | 27 82 | eqtrid | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( coe1 ‘ if ( 𝑖  =  𝑗 ,  ( 1r ‘ 𝑃 ) ,  ( 0g ‘ 𝑃 ) ) ) ‘ 𝐾 )  =  if ( 𝑖  =  𝑗 ,  if ( 𝐾  =  0 ,  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ,  ( 0g ‘ 𝑅 ) ) ,  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 84 | 23 83 | eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( coe1 ‘ ( 𝑖 𝐼 𝑗 ) ) ‘ 𝐾 )  =  if ( 𝑖  =  𝑗 ,  if ( 𝐾  =  0 ,  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ,  ( 0g ‘ 𝑅 ) ) ,  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 85 | 84 | mpoeq3dva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝐼 𝑗 ) ) ‘ 𝐾 ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑗 ,  if ( 𝐾  =  0 ,  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ,  ( 0g ‘ 𝑅 ) ) ,  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 86 | 53 | adantl | ⊢ ( ( 𝐾  =  0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 ) )  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 87 | 86 | eqcomd | ⊢ ( ( 𝐾  =  0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 ) )  →  ( Scalar ‘ 𝑃 )  =  𝑅 ) | 
						
							| 88 | 87 | fveq2d | ⊢ ( ( 𝐾  =  0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 ) )  →  ( 1r ‘ ( Scalar ‘ 𝑃 ) )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 89 | 88 | ifeq1d | ⊢ ( ( 𝐾  =  0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 ) )  →  if ( 𝑖  =  𝑗 ,  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ,  ( 0g ‘ 𝑅 ) )  =  if ( 𝑖  =  𝑗 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 90 | 89 | mpoeq3dv | ⊢ ( ( 𝐾  =  0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑗 ,  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ,  ( 0g ‘ 𝑅 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑗 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 91 |  | iftrue | ⊢ ( 𝐾  =  0  →  if ( 𝐾  =  0 ,  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ,  ( 0g ‘ 𝑅 ) )  =  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 92 | 91 | ifeq1d | ⊢ ( 𝐾  =  0  →  if ( 𝑖  =  𝑗 ,  if ( 𝐾  =  0 ,  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ,  ( 0g ‘ 𝑅 ) ) ,  ( 0g ‘ 𝑅 ) )  =  if ( 𝑖  =  𝑗 ,  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ,  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 93 | 92 | adantr | ⊢ ( ( 𝐾  =  0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 ) )  →  if ( 𝑖  =  𝑗 ,  if ( 𝐾  =  0 ,  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ,  ( 0g ‘ 𝑅 ) ) ,  ( 0g ‘ 𝑅 ) )  =  if ( 𝑖  =  𝑗 ,  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ,  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 94 | 93 | mpoeq3dv | ⊢ ( ( 𝐾  =  0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑗 ,  if ( 𝐾  =  0 ,  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ,  ( 0g ‘ 𝑅 ) ) ,  ( 0g ‘ 𝑅 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑗 ,  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ,  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 95 | 4 57 62 | mat1 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 1r ‘ 𝐴 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑗 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 96 | 6 95 | eqtrid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →   1   =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑗 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 97 | 96 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  →   1   =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑗 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 98 | 97 | adantl | ⊢ ( ( 𝐾  =  0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 ) )  →   1   =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑗 ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 99 | 90 94 98 | 3eqtr4d | ⊢ ( ( 𝐾  =  0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑗 ,  if ( 𝐾  =  0 ,  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ,  ( 0g ‘ 𝑅 ) ) ,  ( 0g ‘ 𝑅 ) ) )  =   1  ) | 
						
							| 100 |  | iftrue | ⊢ ( 𝐾  =  0  →  if ( 𝐾  =  0 ,   1  ,   0  )  =   1  ) | 
						
							| 101 | 100 | eqcomd | ⊢ ( 𝐾  =  0  →   1   =  if ( 𝐾  =  0 ,   1  ,   0  ) ) | 
						
							| 102 | 101 | adantr | ⊢ ( ( 𝐾  =  0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 ) )  →   1   =  if ( 𝐾  =  0 ,   1  ,   0  ) ) | 
						
							| 103 | 99 102 | eqtrd | ⊢ ( ( 𝐾  =  0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑗 ,  if ( 𝐾  =  0 ,  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ,  ( 0g ‘ 𝑅 ) ) ,  ( 0g ‘ 𝑅 ) ) )  =  if ( 𝐾  =  0 ,   1  ,   0  ) ) | 
						
							| 104 |  | ifid | ⊢ if ( 𝑖  =  𝑗 ,  ( 0g ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) | 
						
							| 105 | 104 | a1i | ⊢ ( ( ¬  𝐾  =  0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 ) )  →  if ( 𝑖  =  𝑗 ,  ( 0g ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 106 | 105 | mpoeq3dv | ⊢ ( ( ¬  𝐾  =  0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑗 ,  ( 0g ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 107 |  | iffalse | ⊢ ( ¬  𝐾  =  0  →  if ( 𝐾  =  0 ,  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ,  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 108 | 107 | adantr | ⊢ ( ( ¬  𝐾  =  0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 ) )  →  if ( 𝐾  =  0 ,  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ,  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 109 | 108 | ifeq1d | ⊢ ( ( ¬  𝐾  =  0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 ) )  →  if ( 𝑖  =  𝑗 ,  if ( 𝐾  =  0 ,  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ,  ( 0g ‘ 𝑅 ) ) ,  ( 0g ‘ 𝑅 ) )  =  if ( 𝑖  =  𝑗 ,  ( 0g ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 110 | 109 | mpoeq3dv | ⊢ ( ( ¬  𝐾  =  0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑗 ,  if ( 𝐾  =  0 ,  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ,  ( 0g ‘ 𝑅 ) ) ,  ( 0g ‘ 𝑅 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑗 ,  ( 0g ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 111 |  | 3simpa | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 112 | 111 | adantl | ⊢ ( ( ¬  𝐾  =  0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 113 | 4 62 | mat0op | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 0g ‘ 𝐴 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 114 | 5 113 | eqtrid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →   0   =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 115 | 112 114 | syl | ⊢ ( ( ¬  𝐾  =  0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 ) )  →   0   =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 116 | 106 110 115 | 3eqtr4d | ⊢ ( ( ¬  𝐾  =  0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑗 ,  if ( 𝐾  =  0 ,  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ,  ( 0g ‘ 𝑅 ) ) ,  ( 0g ‘ 𝑅 ) ) )  =   0  ) | 
						
							| 117 |  | iffalse | ⊢ ( ¬  𝐾  =  0  →  if ( 𝐾  =  0 ,   1  ,   0  )  =   0  ) | 
						
							| 118 | 117 | eqcomd | ⊢ ( ¬  𝐾  =  0  →   0   =  if ( 𝐾  =  0 ,   1  ,   0  ) ) | 
						
							| 119 | 118 | adantr | ⊢ ( ( ¬  𝐾  =  0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 ) )  →   0   =  if ( 𝐾  =  0 ,   1  ,   0  ) ) | 
						
							| 120 | 116 119 | eqtrd | ⊢ ( ( ¬  𝐾  =  0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑗 ,  if ( 𝐾  =  0 ,  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ,  ( 0g ‘ 𝑅 ) ) ,  ( 0g ‘ 𝑅 ) ) )  =  if ( 𝐾  =  0 ,   1  ,   0  ) ) | 
						
							| 121 | 103 120 | pm2.61ian | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑗 ,  if ( 𝐾  =  0 ,  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ,  ( 0g ‘ 𝑅 ) ) ,  ( 0g ‘ 𝑅 ) ) )  =  if ( 𝐾  =  0 ,   1  ,   0  ) ) | 
						
							| 122 | 14 85 121 | 3eqtrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝐾  ∈  ℕ0 )  →  ( 𝐼  decompPMat  𝐾 )  =  if ( 𝐾  =  0 ,   1  ,   0  ) ) |