Metamath Proof Explorer


Theorem pmat1ovd

Description: Entries of the identity polynomial matrix over a ring, deduction form. (Contributed by AV, 16-Nov-2019)

Ref Expression
Hypotheses pmatring.p 𝑃 = ( Poly1𝑅 )
pmatring.c 𝐶 = ( 𝑁 Mat 𝑃 )
pmat0op.z 0 = ( 0g𝑃 )
pmat1op.o 1 = ( 1r𝑃 )
pmat1ovd.n ( 𝜑𝑁 ∈ Fin )
pmat1ovd.r ( 𝜑𝑅 ∈ Ring )
pmat1ovd.i ( 𝜑𝐼𝑁 )
pmat1ovd.j ( 𝜑𝐽𝑁 )
pmat1ovd.u 𝑈 = ( 1r𝐶 )
Assertion pmat1ovd ( 𝜑 → ( 𝐼 𝑈 𝐽 ) = if ( 𝐼 = 𝐽 , 1 , 0 ) )

Proof

Step Hyp Ref Expression
1 pmatring.p 𝑃 = ( Poly1𝑅 )
2 pmatring.c 𝐶 = ( 𝑁 Mat 𝑃 )
3 pmat0op.z 0 = ( 0g𝑃 )
4 pmat1op.o 1 = ( 1r𝑃 )
5 pmat1ovd.n ( 𝜑𝑁 ∈ Fin )
6 pmat1ovd.r ( 𝜑𝑅 ∈ Ring )
7 pmat1ovd.i ( 𝜑𝐼𝑁 )
8 pmat1ovd.j ( 𝜑𝐽𝑁 )
9 pmat1ovd.u 𝑈 = ( 1r𝐶 )
10 1 ply1ring ( 𝑅 ∈ Ring → 𝑃 ∈ Ring )
11 6 10 syl ( 𝜑𝑃 ∈ Ring )
12 2 4 3 5 11 7 8 9 mat1ov ( 𝜑 → ( 𝐼 𝑈 𝐽 ) = if ( 𝐼 = 𝐽 , 1 , 0 ) )