Metamath Proof Explorer
		
		
		
		Description:  Entries of the identity polynomial matrix over a ring, deduction form.
       (Contributed by AV, 16-Nov-2019)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | pmatring.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
					
						|  |  | pmatring.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
					
						|  |  | pmat0op.z | ⊢  0   =  ( 0g ‘ 𝑃 ) | 
					
						|  |  | pmat1op.o | ⊢  1   =  ( 1r ‘ 𝑃 ) | 
					
						|  |  | pmat1ovd.n | ⊢ ( 𝜑  →  𝑁  ∈  Fin ) | 
					
						|  |  | pmat1ovd.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
					
						|  |  | pmat1ovd.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑁 ) | 
					
						|  |  | pmat1ovd.j | ⊢ ( 𝜑  →  𝐽  ∈  𝑁 ) | 
					
						|  |  | pmat1ovd.u | ⊢ 𝑈  =  ( 1r ‘ 𝐶 ) | 
				
					|  | Assertion | pmat1ovd | ⊢  ( 𝜑  →  ( 𝐼 𝑈 𝐽 )  =  if ( 𝐼  =  𝐽 ,   1  ,   0  ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmatring.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | pmatring.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | pmat0op.z | ⊢  0   =  ( 0g ‘ 𝑃 ) | 
						
							| 4 |  | pmat1op.o | ⊢  1   =  ( 1r ‘ 𝑃 ) | 
						
							| 5 |  | pmat1ovd.n | ⊢ ( 𝜑  →  𝑁  ∈  Fin ) | 
						
							| 6 |  | pmat1ovd.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 7 |  | pmat1ovd.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑁 ) | 
						
							| 8 |  | pmat1ovd.j | ⊢ ( 𝜑  →  𝐽  ∈  𝑁 ) | 
						
							| 9 |  | pmat1ovd.u | ⊢ 𝑈  =  ( 1r ‘ 𝐶 ) | 
						
							| 10 | 1 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 11 | 6 10 | syl | ⊢ ( 𝜑  →  𝑃  ∈  Ring ) | 
						
							| 12 | 2 4 3 5 11 7 8 9 | mat1ov | ⊢ ( 𝜑  →  ( 𝐼 𝑈 𝐽 )  =  if ( 𝐼  =  𝐽 ,   1  ,   0  ) ) |