Metamath Proof Explorer
Description: Entries of the identity polynomial matrix over a ring, deduction form.
(Contributed by AV, 16-Nov-2019)
|
|
Ref |
Expression |
|
Hypotheses |
pmatring.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
|
|
pmatring.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
|
|
pmat0op.z |
⊢ 0 = ( 0g ‘ 𝑃 ) |
|
|
pmat1op.o |
⊢ 1 = ( 1r ‘ 𝑃 ) |
|
|
pmat1ovd.n |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
|
|
pmat1ovd.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
|
|
pmat1ovd.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑁 ) |
|
|
pmat1ovd.j |
⊢ ( 𝜑 → 𝐽 ∈ 𝑁 ) |
|
|
pmat1ovd.u |
⊢ 𝑈 = ( 1r ‘ 𝐶 ) |
|
Assertion |
pmat1ovd |
⊢ ( 𝜑 → ( 𝐼 𝑈 𝐽 ) = if ( 𝐼 = 𝐽 , 1 , 0 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
pmatring.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
pmatring.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
3 |
|
pmat0op.z |
⊢ 0 = ( 0g ‘ 𝑃 ) |
4 |
|
pmat1op.o |
⊢ 1 = ( 1r ‘ 𝑃 ) |
5 |
|
pmat1ovd.n |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
6 |
|
pmat1ovd.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
7 |
|
pmat1ovd.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑁 ) |
8 |
|
pmat1ovd.j |
⊢ ( 𝜑 → 𝐽 ∈ 𝑁 ) |
9 |
|
pmat1ovd.u |
⊢ 𝑈 = ( 1r ‘ 𝐶 ) |
10 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
11 |
6 10
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
12 |
2 4 3 5 11 7 8 9
|
mat1ov |
⊢ ( 𝜑 → ( 𝐼 𝑈 𝐽 ) = if ( 𝐼 = 𝐽 , 1 , 0 ) ) |