Metamath Proof Explorer
Description: Entries of the identity polynomial matrix over a ring, deduction form.
(Contributed by AV, 16-Nov-2019)
|
|
Ref |
Expression |
|
Hypotheses |
pmatring.p |
|
|
|
pmatring.c |
|
|
|
pmat0op.z |
|
|
|
pmat1op.o |
|
|
|
pmat1ovd.n |
|
|
|
pmat1ovd.r |
|
|
|
pmat1ovd.i |
|
|
|
pmat1ovd.j |
|
|
|
pmat1ovd.u |
|
|
Assertion |
pmat1ovd |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmatring.p |
|
| 2 |
|
pmatring.c |
|
| 3 |
|
pmat0op.z |
|
| 4 |
|
pmat1op.o |
|
| 5 |
|
pmat1ovd.n |
|
| 6 |
|
pmat1ovd.r |
|
| 7 |
|
pmat1ovd.i |
|
| 8 |
|
pmat1ovd.j |
|
| 9 |
|
pmat1ovd.u |
|
| 10 |
1
|
ply1ring |
|
| 11 |
6 10
|
syl |
|
| 12 |
2 4 3 5 11 7 8 9
|
mat1ov |
|