Description: Entries of the identity polynomial matrix over a ring, deduction form. (Contributed by AV, 16-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmatring.p | |- P = ( Poly1 ` R ) | |
| pmatring.c | |- C = ( N Mat P ) | ||
| pmat0op.z | |- .0. = ( 0g ` P ) | ||
| pmat1op.o | |- .1. = ( 1r ` P ) | ||
| pmat1ovd.n | |- ( ph -> N e. Fin ) | ||
| pmat1ovd.r | |- ( ph -> R e. Ring ) | ||
| pmat1ovd.i | |- ( ph -> I e. N ) | ||
| pmat1ovd.j | |- ( ph -> J e. N ) | ||
| pmat1ovd.u | |- U = ( 1r ` C ) | ||
| Assertion | pmat1ovd | |- ( ph -> ( I U J ) = if ( I = J , .1. , .0. ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pmatring.p | |- P = ( Poly1 ` R ) | |
| 2 | pmatring.c | |- C = ( N Mat P ) | |
| 3 | pmat0op.z | |- .0. = ( 0g ` P ) | |
| 4 | pmat1op.o | |- .1. = ( 1r ` P ) | |
| 5 | pmat1ovd.n | |- ( ph -> N e. Fin ) | |
| 6 | pmat1ovd.r | |- ( ph -> R e. Ring ) | |
| 7 | pmat1ovd.i | |- ( ph -> I e. N ) | |
| 8 | pmat1ovd.j | |- ( ph -> J e. N ) | |
| 9 | pmat1ovd.u | |- U = ( 1r ` C ) | |
| 10 | 1 | ply1ring | |- ( R e. Ring -> P e. Ring ) | 
| 11 | 6 10 | syl | |- ( ph -> P e. Ring ) | 
| 12 | 2 4 3 5 11 7 8 9 | mat1ov | |- ( ph -> ( I U J ) = if ( I = J , .1. , .0. ) ) |