Metamath Proof Explorer


Theorem pmat1ovd

Description: Entries of the identity polynomial matrix over a ring, deduction form. (Contributed by AV, 16-Nov-2019)

Ref Expression
Hypotheses pmatring.p
|- P = ( Poly1 ` R )
pmatring.c
|- C = ( N Mat P )
pmat0op.z
|- .0. = ( 0g ` P )
pmat1op.o
|- .1. = ( 1r ` P )
pmat1ovd.n
|- ( ph -> N e. Fin )
pmat1ovd.r
|- ( ph -> R e. Ring )
pmat1ovd.i
|- ( ph -> I e. N )
pmat1ovd.j
|- ( ph -> J e. N )
pmat1ovd.u
|- U = ( 1r ` C )
Assertion pmat1ovd
|- ( ph -> ( I U J ) = if ( I = J , .1. , .0. ) )

Proof

Step Hyp Ref Expression
1 pmatring.p
 |-  P = ( Poly1 ` R )
2 pmatring.c
 |-  C = ( N Mat P )
3 pmat0op.z
 |-  .0. = ( 0g ` P )
4 pmat1op.o
 |-  .1. = ( 1r ` P )
5 pmat1ovd.n
 |-  ( ph -> N e. Fin )
6 pmat1ovd.r
 |-  ( ph -> R e. Ring )
7 pmat1ovd.i
 |-  ( ph -> I e. N )
8 pmat1ovd.j
 |-  ( ph -> J e. N )
9 pmat1ovd.u
 |-  U = ( 1r ` C )
10 1 ply1ring
 |-  ( R e. Ring -> P e. Ring )
11 6 10 syl
 |-  ( ph -> P e. Ring )
12 2 4 3 5 11 7 8 9 mat1ov
 |-  ( ph -> ( I U J ) = if ( I = J , .1. , .0. ) )