| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mat1.a |
|- A = ( N Mat R ) |
| 2 |
|
mat1.o |
|- .1. = ( 1r ` R ) |
| 3 |
|
mat1.z |
|- .0. = ( 0g ` R ) |
| 4 |
|
mat1ov.n |
|- ( ph -> N e. Fin ) |
| 5 |
|
mat1ov.r |
|- ( ph -> R e. Ring ) |
| 6 |
|
mat1ov.i |
|- ( ph -> I e. N ) |
| 7 |
|
mat1ov.j |
|- ( ph -> J e. N ) |
| 8 |
|
mat1ov.u |
|- U = ( 1r ` A ) |
| 9 |
1 2 3
|
mat1 |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` A ) = ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) |
| 10 |
4 5 9
|
syl2anc |
|- ( ph -> ( 1r ` A ) = ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) |
| 11 |
8 10
|
eqtrid |
|- ( ph -> U = ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) |
| 12 |
|
eqeq12 |
|- ( ( i = I /\ j = J ) -> ( i = j <-> I = J ) ) |
| 13 |
12
|
ifbid |
|- ( ( i = I /\ j = J ) -> if ( i = j , .1. , .0. ) = if ( I = J , .1. , .0. ) ) |
| 14 |
13
|
adantl |
|- ( ( ph /\ ( i = I /\ j = J ) ) -> if ( i = j , .1. , .0. ) = if ( I = J , .1. , .0. ) ) |
| 15 |
2
|
fvexi |
|- .1. e. _V |
| 16 |
3
|
fvexi |
|- .0. e. _V |
| 17 |
15 16
|
ifex |
|- if ( I = J , .1. , .0. ) e. _V |
| 18 |
17
|
a1i |
|- ( ph -> if ( I = J , .1. , .0. ) e. _V ) |
| 19 |
11 14 6 7 18
|
ovmpod |
|- ( ph -> ( I U J ) = if ( I = J , .1. , .0. ) ) |