| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mat1.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 2 |
|
mat1.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 3 |
|
mat1.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
|
mat1ov.n |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
| 5 |
|
mat1ov.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 6 |
|
mat1ov.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑁 ) |
| 7 |
|
mat1ov.j |
⊢ ( 𝜑 → 𝐽 ∈ 𝑁 ) |
| 8 |
|
mat1ov.u |
⊢ 𝑈 = ( 1r ‘ 𝐴 ) |
| 9 |
1 2 3
|
mat1 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ 𝐴 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ) |
| 10 |
4 5 9
|
syl2anc |
⊢ ( 𝜑 → ( 1r ‘ 𝐴 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ) |
| 11 |
8 10
|
eqtrid |
⊢ ( 𝜑 → 𝑈 = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ) |
| 12 |
|
eqeq12 |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑗 = 𝐽 ) → ( 𝑖 = 𝑗 ↔ 𝐼 = 𝐽 ) ) |
| 13 |
12
|
ifbid |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑗 = 𝐽 ) → if ( 𝑖 = 𝑗 , 1 , 0 ) = if ( 𝐼 = 𝐽 , 1 , 0 ) ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑗 = 𝐽 ) ) → if ( 𝑖 = 𝑗 , 1 , 0 ) = if ( 𝐼 = 𝐽 , 1 , 0 ) ) |
| 15 |
2
|
fvexi |
⊢ 1 ∈ V |
| 16 |
3
|
fvexi |
⊢ 0 ∈ V |
| 17 |
15 16
|
ifex |
⊢ if ( 𝐼 = 𝐽 , 1 , 0 ) ∈ V |
| 18 |
17
|
a1i |
⊢ ( 𝜑 → if ( 𝐼 = 𝐽 , 1 , 0 ) ∈ V ) |
| 19 |
11 14 6 7 18
|
ovmpod |
⊢ ( 𝜑 → ( 𝐼 𝑈 𝐽 ) = if ( 𝐼 = 𝐽 , 1 , 0 ) ) |