Metamath Proof Explorer


Theorem mat1ov

Description: Entries of an identity matrix, deduction form. (Contributed by Stefan O'Rear, 10-Jul-2018)

Ref Expression
Hypotheses mat1.a 𝐴 = ( 𝑁 Mat 𝑅 )
mat1.o 1 = ( 1r𝑅 )
mat1.z 0 = ( 0g𝑅 )
mat1ov.n ( 𝜑𝑁 ∈ Fin )
mat1ov.r ( 𝜑𝑅 ∈ Ring )
mat1ov.i ( 𝜑𝐼𝑁 )
mat1ov.j ( 𝜑𝐽𝑁 )
mat1ov.u 𝑈 = ( 1r𝐴 )
Assertion mat1ov ( 𝜑 → ( 𝐼 𝑈 𝐽 ) = if ( 𝐼 = 𝐽 , 1 , 0 ) )

Proof

Step Hyp Ref Expression
1 mat1.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 mat1.o 1 = ( 1r𝑅 )
3 mat1.z 0 = ( 0g𝑅 )
4 mat1ov.n ( 𝜑𝑁 ∈ Fin )
5 mat1ov.r ( 𝜑𝑅 ∈ Ring )
6 mat1ov.i ( 𝜑𝐼𝑁 )
7 mat1ov.j ( 𝜑𝐽𝑁 )
8 mat1ov.u 𝑈 = ( 1r𝐴 )
9 1 2 3 mat1 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r𝐴 ) = ( 𝑖𝑁 , 𝑗𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) )
10 4 5 9 syl2anc ( 𝜑 → ( 1r𝐴 ) = ( 𝑖𝑁 , 𝑗𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) )
11 8 10 eqtrid ( 𝜑𝑈 = ( 𝑖𝑁 , 𝑗𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) )
12 eqeq12 ( ( 𝑖 = 𝐼𝑗 = 𝐽 ) → ( 𝑖 = 𝑗𝐼 = 𝐽 ) )
13 12 ifbid ( ( 𝑖 = 𝐼𝑗 = 𝐽 ) → if ( 𝑖 = 𝑗 , 1 , 0 ) = if ( 𝐼 = 𝐽 , 1 , 0 ) )
14 13 adantl ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑗 = 𝐽 ) ) → if ( 𝑖 = 𝑗 , 1 , 0 ) = if ( 𝐼 = 𝐽 , 1 , 0 ) )
15 2 fvexi 1 ∈ V
16 3 fvexi 0 ∈ V
17 15 16 ifex if ( 𝐼 = 𝐽 , 1 , 0 ) ∈ V
18 17 a1i ( 𝜑 → if ( 𝐼 = 𝐽 , 1 , 0 ) ∈ V )
19 11 14 6 7 18 ovmpod ( 𝜑 → ( 𝐼 𝑈 𝐽 ) = if ( 𝐼 = 𝐽 , 1 , 0 ) )