| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mat1.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 2 |
|
mat1.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 3 |
|
mat1.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 5 |
|
simpr |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑅 ∈ Ring ) |
| 6 |
|
eqid |
⊢ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) |
| 7 |
|
simpl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑁 ∈ Fin ) |
| 8 |
4 5 2 3 6 7
|
mamumat1cl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
| 9 |
1 4
|
matbas2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) = ( Base ‘ 𝐴 ) ) |
| 10 |
8 9
|
eleqtrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ∈ ( Base ‘ 𝐴 ) ) |
| 11 |
|
eqid |
⊢ ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) = ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) |
| 12 |
1 11
|
matmulr |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) = ( .r ‘ 𝐴 ) ) |
| 13 |
12
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) = ( .r ‘ 𝐴 ) ) |
| 14 |
13
|
oveqd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) 𝑥 ) = ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ( .r ‘ 𝐴 ) 𝑥 ) ) |
| 15 |
|
simplr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → 𝑅 ∈ Ring ) |
| 16 |
|
simpll |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → 𝑁 ∈ Fin ) |
| 17 |
9
|
eleq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ↔ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ) |
| 18 |
17
|
biimpar |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
| 19 |
4 15 2 3 6 16 16 11 18
|
mamulid |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) 𝑥 ) = 𝑥 ) |
| 20 |
14 19
|
eqtr3d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ( .r ‘ 𝐴 ) 𝑥 ) = 𝑥 ) |
| 21 |
13
|
oveqd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑥 ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ) = ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ) ) |
| 22 |
4 15 2 3 6 16 16 11 18
|
mamurid |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑥 ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ) = 𝑥 ) |
| 23 |
21 22
|
eqtr3d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ) = 𝑥 ) |
| 24 |
20 23
|
jca |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ( .r ‘ 𝐴 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ) = 𝑥 ) ) |
| 25 |
24
|
ralrimiva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ( .r ‘ 𝐴 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ) = 𝑥 ) ) |
| 26 |
1
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
| 27 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
| 28 |
|
eqid |
⊢ ( .r ‘ 𝐴 ) = ( .r ‘ 𝐴 ) |
| 29 |
|
eqid |
⊢ ( 1r ‘ 𝐴 ) = ( 1r ‘ 𝐴 ) |
| 30 |
27 28 29
|
isringid |
⊢ ( 𝐴 ∈ Ring → ( ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ∈ ( Base ‘ 𝐴 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ( .r ‘ 𝐴 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ) = 𝑥 ) ) ↔ ( 1r ‘ 𝐴 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ) ) |
| 31 |
26 30
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ∈ ( Base ‘ 𝐴 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ( .r ‘ 𝐴 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ) = 𝑥 ) ) ↔ ( 1r ‘ 𝐴 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ) ) |
| 32 |
10 25 31
|
mpbi2and |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ 𝐴 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ) |