| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mamumat1cl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
mamumat1cl.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 3 |
|
mamumat1cl.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 4 |
|
mamumat1cl.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 5 |
|
mamumat1cl.i |
⊢ 𝐼 = ( 𝑖 ∈ 𝑀 , 𝑗 ∈ 𝑀 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) |
| 6 |
|
mamumat1cl.m |
⊢ ( 𝜑 → 𝑀 ∈ Fin ) |
| 7 |
|
mamulid.n |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
| 8 |
|
mamulid.f |
⊢ 𝐹 = ( 𝑅 maMul 〈 𝑀 , 𝑀 , 𝑁 〉 ) |
| 9 |
|
mamulid.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
| 10 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 11 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁 ) ) → 𝑅 ∈ Ring ) |
| 12 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁 ) ) → 𝑀 ∈ Fin ) |
| 13 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁 ) ) → 𝑁 ∈ Fin ) |
| 14 |
1 2 3 4 5 6
|
mamumat1cl |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑀 ) ) ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁 ) ) → 𝐼 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑀 ) ) ) |
| 16 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁 ) ) → 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
| 17 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁 ) ) → 𝑙 ∈ 𝑀 ) |
| 18 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁 ) ) → 𝑘 ∈ 𝑁 ) |
| 19 |
8 1 10 11 12 12 13 15 16 17 18
|
mamufv |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁 ) ) → ( 𝑙 ( 𝐼 𝐹 𝑋 ) 𝑘 ) = ( 𝑅 Σg ( 𝑚 ∈ 𝑀 ↦ ( ( 𝑙 𝐼 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) ) ) ) ) |
| 20 |
|
ringmnd |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) |
| 21 |
11 20
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁 ) ) → 𝑅 ∈ Mnd ) |
| 22 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁 ) ) ∧ 𝑚 ∈ 𝑀 ) → 𝑅 ∈ Ring ) |
| 23 |
|
elmapi |
⊢ ( 𝐼 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑀 ) ) → 𝐼 : ( 𝑀 × 𝑀 ) ⟶ 𝐵 ) |
| 24 |
14 23
|
syl |
⊢ ( 𝜑 → 𝐼 : ( 𝑀 × 𝑀 ) ⟶ 𝐵 ) |
| 25 |
24
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁 ) ) ∧ 𝑚 ∈ 𝑀 ) → 𝐼 : ( 𝑀 × 𝑀 ) ⟶ 𝐵 ) |
| 26 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁 ) ) ∧ 𝑚 ∈ 𝑀 ) → 𝑙 ∈ 𝑀 ) |
| 27 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁 ) ) ∧ 𝑚 ∈ 𝑀 ) → 𝑚 ∈ 𝑀 ) |
| 28 |
25 26 27
|
fovcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁 ) ) ∧ 𝑚 ∈ 𝑀 ) → ( 𝑙 𝐼 𝑚 ) ∈ 𝐵 ) |
| 29 |
|
elmapi |
⊢ ( 𝑋 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) → 𝑋 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
| 30 |
9 29
|
syl |
⊢ ( 𝜑 → 𝑋 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
| 31 |
30
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁 ) ) ∧ 𝑚 ∈ 𝑀 ) → 𝑋 : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
| 32 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁 ) ) ∧ 𝑚 ∈ 𝑀 ) → 𝑘 ∈ 𝑁 ) |
| 33 |
31 27 32
|
fovcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁 ) ) ∧ 𝑚 ∈ 𝑀 ) → ( 𝑚 𝑋 𝑘 ) ∈ 𝐵 ) |
| 34 |
1 10
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑙 𝐼 𝑚 ) ∈ 𝐵 ∧ ( 𝑚 𝑋 𝑘 ) ∈ 𝐵 ) → ( ( 𝑙 𝐼 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) ) ∈ 𝐵 ) |
| 35 |
22 28 33 34
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁 ) ) ∧ 𝑚 ∈ 𝑀 ) → ( ( 𝑙 𝐼 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) ) ∈ 𝐵 ) |
| 36 |
35
|
fmpttd |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁 ) ) → ( 𝑚 ∈ 𝑀 ↦ ( ( 𝑙 𝐼 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) ) ) : 𝑀 ⟶ 𝐵 ) |
| 37 |
26
|
3adant3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁 ) ) ∧ 𝑚 ∈ 𝑀 ∧ 𝑚 ≠ 𝑙 ) → 𝑙 ∈ 𝑀 ) |
| 38 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁 ) ) ∧ 𝑚 ∈ 𝑀 ∧ 𝑚 ≠ 𝑙 ) → 𝑚 ∈ 𝑀 ) |
| 39 |
1 2 3 4 5 6
|
mat1comp |
⊢ ( ( 𝑙 ∈ 𝑀 ∧ 𝑚 ∈ 𝑀 ) → ( 𝑙 𝐼 𝑚 ) = if ( 𝑙 = 𝑚 , 1 , 0 ) ) |
| 40 |
|
equcom |
⊢ ( 𝑙 = 𝑚 ↔ 𝑚 = 𝑙 ) |
| 41 |
40
|
a1i |
⊢ ( ( 𝑙 ∈ 𝑀 ∧ 𝑚 ∈ 𝑀 ) → ( 𝑙 = 𝑚 ↔ 𝑚 = 𝑙 ) ) |
| 42 |
41
|
ifbid |
⊢ ( ( 𝑙 ∈ 𝑀 ∧ 𝑚 ∈ 𝑀 ) → if ( 𝑙 = 𝑚 , 1 , 0 ) = if ( 𝑚 = 𝑙 , 1 , 0 ) ) |
| 43 |
39 42
|
eqtrd |
⊢ ( ( 𝑙 ∈ 𝑀 ∧ 𝑚 ∈ 𝑀 ) → ( 𝑙 𝐼 𝑚 ) = if ( 𝑚 = 𝑙 , 1 , 0 ) ) |
| 44 |
37 38 43
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁 ) ) ∧ 𝑚 ∈ 𝑀 ∧ 𝑚 ≠ 𝑙 ) → ( 𝑙 𝐼 𝑚 ) = if ( 𝑚 = 𝑙 , 1 , 0 ) ) |
| 45 |
|
ifnefalse |
⊢ ( 𝑚 ≠ 𝑙 → if ( 𝑚 = 𝑙 , 1 , 0 ) = 0 ) |
| 46 |
45
|
3ad2ant3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁 ) ) ∧ 𝑚 ∈ 𝑀 ∧ 𝑚 ≠ 𝑙 ) → if ( 𝑚 = 𝑙 , 1 , 0 ) = 0 ) |
| 47 |
44 46
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁 ) ) ∧ 𝑚 ∈ 𝑀 ∧ 𝑚 ≠ 𝑙 ) → ( 𝑙 𝐼 𝑚 ) = 0 ) |
| 48 |
47
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁 ) ) ∧ 𝑚 ∈ 𝑀 ∧ 𝑚 ≠ 𝑙 ) → ( ( 𝑙 𝐼 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) ) = ( 0 ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) ) ) |
| 49 |
1 10 4
|
ringlz |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑚 𝑋 𝑘 ) ∈ 𝐵 ) → ( 0 ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) ) = 0 ) |
| 50 |
22 33 49
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁 ) ) ∧ 𝑚 ∈ 𝑀 ) → ( 0 ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) ) = 0 ) |
| 51 |
50
|
3adant3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁 ) ) ∧ 𝑚 ∈ 𝑀 ∧ 𝑚 ≠ 𝑙 ) → ( 0 ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) ) = 0 ) |
| 52 |
48 51
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁 ) ) ∧ 𝑚 ∈ 𝑀 ∧ 𝑚 ≠ 𝑙 ) → ( ( 𝑙 𝐼 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) ) = 0 ) |
| 53 |
52 12
|
suppsssn |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁 ) ) → ( ( 𝑚 ∈ 𝑀 ↦ ( ( 𝑙 𝐼 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) ) ) supp 0 ) ⊆ { 𝑙 } ) |
| 54 |
1 4 21 12 17 36 53
|
gsumpt |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁 ) ) → ( 𝑅 Σg ( 𝑚 ∈ 𝑀 ↦ ( ( 𝑙 𝐼 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) ) ) ) = ( ( 𝑚 ∈ 𝑀 ↦ ( ( 𝑙 𝐼 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) ) ) ‘ 𝑙 ) ) |
| 55 |
|
oveq2 |
⊢ ( 𝑚 = 𝑙 → ( 𝑙 𝐼 𝑚 ) = ( 𝑙 𝐼 𝑙 ) ) |
| 56 |
|
oveq1 |
⊢ ( 𝑚 = 𝑙 → ( 𝑚 𝑋 𝑘 ) = ( 𝑙 𝑋 𝑘 ) ) |
| 57 |
55 56
|
oveq12d |
⊢ ( 𝑚 = 𝑙 → ( ( 𝑙 𝐼 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) ) = ( ( 𝑙 𝐼 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑋 𝑘 ) ) ) |
| 58 |
|
eqid |
⊢ ( 𝑚 ∈ 𝑀 ↦ ( ( 𝑙 𝐼 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) ) ) = ( 𝑚 ∈ 𝑀 ↦ ( ( 𝑙 𝐼 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) ) ) |
| 59 |
|
ovex |
⊢ ( ( 𝑙 𝐼 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑋 𝑘 ) ) ∈ V |
| 60 |
57 58 59
|
fvmpt |
⊢ ( 𝑙 ∈ 𝑀 → ( ( 𝑚 ∈ 𝑀 ↦ ( ( 𝑙 𝐼 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) ) ) ‘ 𝑙 ) = ( ( 𝑙 𝐼 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑋 𝑘 ) ) ) |
| 61 |
60
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁 ) ) → ( ( 𝑚 ∈ 𝑀 ↦ ( ( 𝑙 𝐼 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) ) ) ‘ 𝑙 ) = ( ( 𝑙 𝐼 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑋 𝑘 ) ) ) |
| 62 |
|
equequ1 |
⊢ ( 𝑖 = 𝑙 → ( 𝑖 = 𝑗 ↔ 𝑙 = 𝑗 ) ) |
| 63 |
62
|
ifbid |
⊢ ( 𝑖 = 𝑙 → if ( 𝑖 = 𝑗 , 1 , 0 ) = if ( 𝑙 = 𝑗 , 1 , 0 ) ) |
| 64 |
|
equequ2 |
⊢ ( 𝑗 = 𝑙 → ( 𝑙 = 𝑗 ↔ 𝑙 = 𝑙 ) ) |
| 65 |
64
|
ifbid |
⊢ ( 𝑗 = 𝑙 → if ( 𝑙 = 𝑗 , 1 , 0 ) = if ( 𝑙 = 𝑙 , 1 , 0 ) ) |
| 66 |
|
equid |
⊢ 𝑙 = 𝑙 |
| 67 |
66
|
iftruei |
⊢ if ( 𝑙 = 𝑙 , 1 , 0 ) = 1 |
| 68 |
65 67
|
eqtrdi |
⊢ ( 𝑗 = 𝑙 → if ( 𝑙 = 𝑗 , 1 , 0 ) = 1 ) |
| 69 |
3
|
fvexi |
⊢ 1 ∈ V |
| 70 |
63 68 5 69
|
ovmpo |
⊢ ( ( 𝑙 ∈ 𝑀 ∧ 𝑙 ∈ 𝑀 ) → ( 𝑙 𝐼 𝑙 ) = 1 ) |
| 71 |
70
|
anidms |
⊢ ( 𝑙 ∈ 𝑀 → ( 𝑙 𝐼 𝑙 ) = 1 ) |
| 72 |
71
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁 ) ) → ( 𝑙 𝐼 𝑙 ) = 1 ) |
| 73 |
72
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁 ) ) → ( ( 𝑙 𝐼 𝑙 ) ( .r ‘ 𝑅 ) ( 𝑙 𝑋 𝑘 ) ) = ( 1 ( .r ‘ 𝑅 ) ( 𝑙 𝑋 𝑘 ) ) ) |
| 74 |
30
|
fovcdmda |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁 ) ) → ( 𝑙 𝑋 𝑘 ) ∈ 𝐵 ) |
| 75 |
1 10 3
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑙 𝑋 𝑘 ) ∈ 𝐵 ) → ( 1 ( .r ‘ 𝑅 ) ( 𝑙 𝑋 𝑘 ) ) = ( 𝑙 𝑋 𝑘 ) ) |
| 76 |
11 74 75
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁 ) ) → ( 1 ( .r ‘ 𝑅 ) ( 𝑙 𝑋 𝑘 ) ) = ( 𝑙 𝑋 𝑘 ) ) |
| 77 |
61 73 76
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁 ) ) → ( ( 𝑚 ∈ 𝑀 ↦ ( ( 𝑙 𝐼 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝑋 𝑘 ) ) ) ‘ 𝑙 ) = ( 𝑙 𝑋 𝑘 ) ) |
| 78 |
19 54 77
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁 ) ) → ( 𝑙 ( 𝐼 𝐹 𝑋 ) 𝑘 ) = ( 𝑙 𝑋 𝑘 ) ) |
| 79 |
78
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑙 ∈ 𝑀 ∀ 𝑘 ∈ 𝑁 ( 𝑙 ( 𝐼 𝐹 𝑋 ) 𝑘 ) = ( 𝑙 𝑋 𝑘 ) ) |
| 80 |
1 2 8 6 6 7 14 9
|
mamucl |
⊢ ( 𝜑 → ( 𝐼 𝐹 𝑋 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) ) |
| 81 |
|
elmapi |
⊢ ( ( 𝐼 𝐹 𝑋 ) ∈ ( 𝐵 ↑m ( 𝑀 × 𝑁 ) ) → ( 𝐼 𝐹 𝑋 ) : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
| 82 |
80 81
|
syl |
⊢ ( 𝜑 → ( 𝐼 𝐹 𝑋 ) : ( 𝑀 × 𝑁 ) ⟶ 𝐵 ) |
| 83 |
82
|
ffnd |
⊢ ( 𝜑 → ( 𝐼 𝐹 𝑋 ) Fn ( 𝑀 × 𝑁 ) ) |
| 84 |
30
|
ffnd |
⊢ ( 𝜑 → 𝑋 Fn ( 𝑀 × 𝑁 ) ) |
| 85 |
|
eqfnov2 |
⊢ ( ( ( 𝐼 𝐹 𝑋 ) Fn ( 𝑀 × 𝑁 ) ∧ 𝑋 Fn ( 𝑀 × 𝑁 ) ) → ( ( 𝐼 𝐹 𝑋 ) = 𝑋 ↔ ∀ 𝑙 ∈ 𝑀 ∀ 𝑘 ∈ 𝑁 ( 𝑙 ( 𝐼 𝐹 𝑋 ) 𝑘 ) = ( 𝑙 𝑋 𝑘 ) ) ) |
| 86 |
83 84 85
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐼 𝐹 𝑋 ) = 𝑋 ↔ ∀ 𝑙 ∈ 𝑀 ∀ 𝑘 ∈ 𝑁 ( 𝑙 ( 𝐼 𝐹 𝑋 ) 𝑘 ) = ( 𝑙 𝑋 𝑘 ) ) ) |
| 87 |
79 86
|
mpbird |
⊢ ( 𝜑 → ( 𝐼 𝐹 𝑋 ) = 𝑋 ) |