Metamath Proof Explorer


Theorem mat1comp

Description: The components of the identity matrix (as operation in maps-to notation). (Contributed by AV, 22-Jul-2019)

Ref Expression
Hypotheses mamumat1cl.b 𝐵 = ( Base ‘ 𝑅 )
mamumat1cl.r ( 𝜑𝑅 ∈ Ring )
mamumat1cl.o 1 = ( 1r𝑅 )
mamumat1cl.z 0 = ( 0g𝑅 )
mamumat1cl.i 𝐼 = ( 𝑖𝑀 , 𝑗𝑀 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) )
mamumat1cl.m ( 𝜑𝑀 ∈ Fin )
Assertion mat1comp ( ( 𝐴𝑀𝐽𝑀 ) → ( 𝐴 𝐼 𝐽 ) = if ( 𝐴 = 𝐽 , 1 , 0 ) )

Proof

Step Hyp Ref Expression
1 mamumat1cl.b 𝐵 = ( Base ‘ 𝑅 )
2 mamumat1cl.r ( 𝜑𝑅 ∈ Ring )
3 mamumat1cl.o 1 = ( 1r𝑅 )
4 mamumat1cl.z 0 = ( 0g𝑅 )
5 mamumat1cl.i 𝐼 = ( 𝑖𝑀 , 𝑗𝑀 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) )
6 mamumat1cl.m ( 𝜑𝑀 ∈ Fin )
7 eqeq1 ( 𝑖 = 𝐴 → ( 𝑖 = 𝑗𝐴 = 𝑗 ) )
8 7 ifbid ( 𝑖 = 𝐴 → if ( 𝑖 = 𝑗 , 1 , 0 ) = if ( 𝐴 = 𝑗 , 1 , 0 ) )
9 eqeq2 ( 𝑗 = 𝐽 → ( 𝐴 = 𝑗𝐴 = 𝐽 ) )
10 9 ifbid ( 𝑗 = 𝐽 → if ( 𝐴 = 𝑗 , 1 , 0 ) = if ( 𝐴 = 𝐽 , 1 , 0 ) )
11 3 fvexi 1 ∈ V
12 4 fvexi 0 ∈ V
13 11 12 ifex if ( 𝐴 = 𝐽 , 1 , 0 ) ∈ V
14 8 10 5 13 ovmpo ( ( 𝐴𝑀𝐽𝑀 ) → ( 𝐴 𝐼 𝐽 ) = if ( 𝐴 = 𝐽 , 1 , 0 ) )