| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mamumat1cl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
mamumat1cl.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 3 |
|
mamumat1cl.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 4 |
|
mamumat1cl.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 5 |
|
mamumat1cl.i |
⊢ 𝐼 = ( 𝑖 ∈ 𝑀 , 𝑗 ∈ 𝑀 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) |
| 6 |
|
mamumat1cl.m |
⊢ ( 𝜑 → 𝑀 ∈ Fin ) |
| 7 |
|
mamulid.n |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
| 8 |
|
mamurid.f |
⊢ 𝐹 = ( 𝑅 maMul 〈 𝑁 , 𝑀 , 𝑀 〉 ) |
| 9 |
|
mamurid.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑀 ) ) ) |
| 10 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 11 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) → 𝑅 ∈ Ring ) |
| 12 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) → 𝑁 ∈ Fin ) |
| 13 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) → 𝑀 ∈ Fin ) |
| 14 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) → 𝑋 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑀 ) ) ) |
| 15 |
1 2 3 4 5 6
|
mamumat1cl |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑀 ) ) ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) → 𝐼 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑀 ) ) ) |
| 17 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) → 𝑙 ∈ 𝑁 ) |
| 18 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) → 𝑚 ∈ 𝑀 ) |
| 19 |
8 1 10 11 12 13 13 14 16 17 18
|
mamufv |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) → ( 𝑙 ( 𝑋 𝐹 𝐼 ) 𝑚 ) = ( 𝑅 Σg ( 𝑘 ∈ 𝑀 ↦ ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝐼 𝑚 ) ) ) ) ) |
| 20 |
|
ringmnd |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) |
| 21 |
11 20
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) → 𝑅 ∈ Mnd ) |
| 22 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) ∧ 𝑘 ∈ 𝑀 ) → 𝑅 ∈ Ring ) |
| 23 |
|
elmapi |
⊢ ( 𝑋 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑀 ) ) → 𝑋 : ( 𝑁 × 𝑀 ) ⟶ 𝐵 ) |
| 24 |
9 23
|
syl |
⊢ ( 𝜑 → 𝑋 : ( 𝑁 × 𝑀 ) ⟶ 𝐵 ) |
| 25 |
24
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) ∧ 𝑘 ∈ 𝑀 ) → 𝑋 : ( 𝑁 × 𝑀 ) ⟶ 𝐵 ) |
| 26 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) ∧ 𝑘 ∈ 𝑀 ) → 𝑙 ∈ 𝑁 ) |
| 27 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) ∧ 𝑘 ∈ 𝑀 ) → 𝑘 ∈ 𝑀 ) |
| 28 |
25 26 27
|
fovcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) ∧ 𝑘 ∈ 𝑀 ) → ( 𝑙 𝑋 𝑘 ) ∈ 𝐵 ) |
| 29 |
|
elmapi |
⊢ ( 𝐼 ∈ ( 𝐵 ↑m ( 𝑀 × 𝑀 ) ) → 𝐼 : ( 𝑀 × 𝑀 ) ⟶ 𝐵 ) |
| 30 |
15 29
|
syl |
⊢ ( 𝜑 → 𝐼 : ( 𝑀 × 𝑀 ) ⟶ 𝐵 ) |
| 31 |
30
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) ∧ 𝑘 ∈ 𝑀 ) → 𝐼 : ( 𝑀 × 𝑀 ) ⟶ 𝐵 ) |
| 32 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) ∧ 𝑘 ∈ 𝑀 ) → 𝑚 ∈ 𝑀 ) |
| 33 |
31 27 32
|
fovcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) ∧ 𝑘 ∈ 𝑀 ) → ( 𝑘 𝐼 𝑚 ) ∈ 𝐵 ) |
| 34 |
1 10
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑙 𝑋 𝑘 ) ∈ 𝐵 ∧ ( 𝑘 𝐼 𝑚 ) ∈ 𝐵 ) → ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝐼 𝑚 ) ) ∈ 𝐵 ) |
| 35 |
22 28 33 34
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) ∧ 𝑘 ∈ 𝑀 ) → ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝐼 𝑚 ) ) ∈ 𝐵 ) |
| 36 |
35
|
fmpttd |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) → ( 𝑘 ∈ 𝑀 ↦ ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝐼 𝑚 ) ) ) : 𝑀 ⟶ 𝐵 ) |
| 37 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) ∧ 𝑘 ∈ 𝑀 ∧ 𝑘 ≠ 𝑚 ) → 𝑘 ∈ 𝑀 ) |
| 38 |
32
|
3adant3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) ∧ 𝑘 ∈ 𝑀 ∧ 𝑘 ≠ 𝑚 ) → 𝑚 ∈ 𝑀 ) |
| 39 |
1 2 3 4 5 6
|
mat1comp |
⊢ ( ( 𝑘 ∈ 𝑀 ∧ 𝑚 ∈ 𝑀 ) → ( 𝑘 𝐼 𝑚 ) = if ( 𝑘 = 𝑚 , 1 , 0 ) ) |
| 40 |
37 38 39
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) ∧ 𝑘 ∈ 𝑀 ∧ 𝑘 ≠ 𝑚 ) → ( 𝑘 𝐼 𝑚 ) = if ( 𝑘 = 𝑚 , 1 , 0 ) ) |
| 41 |
|
ifnefalse |
⊢ ( 𝑘 ≠ 𝑚 → if ( 𝑘 = 𝑚 , 1 , 0 ) = 0 ) |
| 42 |
41
|
3ad2ant3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) ∧ 𝑘 ∈ 𝑀 ∧ 𝑘 ≠ 𝑚 ) → if ( 𝑘 = 𝑚 , 1 , 0 ) = 0 ) |
| 43 |
40 42
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) ∧ 𝑘 ∈ 𝑀 ∧ 𝑘 ≠ 𝑚 ) → ( 𝑘 𝐼 𝑚 ) = 0 ) |
| 44 |
43
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) ∧ 𝑘 ∈ 𝑀 ∧ 𝑘 ≠ 𝑚 ) → ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝐼 𝑚 ) ) = ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) 0 ) ) |
| 45 |
1 10 4
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑙 𝑋 𝑘 ) ∈ 𝐵 ) → ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) 0 ) = 0 ) |
| 46 |
22 28 45
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) ∧ 𝑘 ∈ 𝑀 ) → ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) 0 ) = 0 ) |
| 47 |
46
|
3adant3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) ∧ 𝑘 ∈ 𝑀 ∧ 𝑘 ≠ 𝑚 ) → ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) 0 ) = 0 ) |
| 48 |
44 47
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) ∧ 𝑘 ∈ 𝑀 ∧ 𝑘 ≠ 𝑚 ) → ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝐼 𝑚 ) ) = 0 ) |
| 49 |
48 13
|
suppsssn |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) → ( ( 𝑘 ∈ 𝑀 ↦ ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝐼 𝑚 ) ) ) supp 0 ) ⊆ { 𝑚 } ) |
| 50 |
1 4 21 13 18 36 49
|
gsumpt |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) → ( 𝑅 Σg ( 𝑘 ∈ 𝑀 ↦ ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝐼 𝑚 ) ) ) ) = ( ( 𝑘 ∈ 𝑀 ↦ ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝐼 𝑚 ) ) ) ‘ 𝑚 ) ) |
| 51 |
|
oveq2 |
⊢ ( 𝑘 = 𝑚 → ( 𝑙 𝑋 𝑘 ) = ( 𝑙 𝑋 𝑚 ) ) |
| 52 |
|
oveq1 |
⊢ ( 𝑘 = 𝑚 → ( 𝑘 𝐼 𝑚 ) = ( 𝑚 𝐼 𝑚 ) ) |
| 53 |
51 52
|
oveq12d |
⊢ ( 𝑘 = 𝑚 → ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝐼 𝑚 ) ) = ( ( 𝑙 𝑋 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝐼 𝑚 ) ) ) |
| 54 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑀 ↦ ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝐼 𝑚 ) ) ) = ( 𝑘 ∈ 𝑀 ↦ ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝐼 𝑚 ) ) ) |
| 55 |
|
ovex |
⊢ ( ( 𝑙 𝑋 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝐼 𝑚 ) ) ∈ V |
| 56 |
53 54 55
|
fvmpt |
⊢ ( 𝑚 ∈ 𝑀 → ( ( 𝑘 ∈ 𝑀 ↦ ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝐼 𝑚 ) ) ) ‘ 𝑚 ) = ( ( 𝑙 𝑋 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝐼 𝑚 ) ) ) |
| 57 |
56
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) → ( ( 𝑘 ∈ 𝑀 ↦ ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝐼 𝑚 ) ) ) ‘ 𝑚 ) = ( ( 𝑙 𝑋 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝐼 𝑚 ) ) ) |
| 58 |
|
equequ1 |
⊢ ( 𝑖 = 𝑚 → ( 𝑖 = 𝑗 ↔ 𝑚 = 𝑗 ) ) |
| 59 |
58
|
ifbid |
⊢ ( 𝑖 = 𝑚 → if ( 𝑖 = 𝑗 , 1 , 0 ) = if ( 𝑚 = 𝑗 , 1 , 0 ) ) |
| 60 |
|
equequ2 |
⊢ ( 𝑗 = 𝑚 → ( 𝑚 = 𝑗 ↔ 𝑚 = 𝑚 ) ) |
| 61 |
60
|
ifbid |
⊢ ( 𝑗 = 𝑚 → if ( 𝑚 = 𝑗 , 1 , 0 ) = if ( 𝑚 = 𝑚 , 1 , 0 ) ) |
| 62 |
|
eqid |
⊢ 𝑚 = 𝑚 |
| 63 |
62
|
iftruei |
⊢ if ( 𝑚 = 𝑚 , 1 , 0 ) = 1 |
| 64 |
61 63
|
eqtrdi |
⊢ ( 𝑗 = 𝑚 → if ( 𝑚 = 𝑗 , 1 , 0 ) = 1 ) |
| 65 |
3
|
fvexi |
⊢ 1 ∈ V |
| 66 |
59 64 5 65
|
ovmpo |
⊢ ( ( 𝑚 ∈ 𝑀 ∧ 𝑚 ∈ 𝑀 ) → ( 𝑚 𝐼 𝑚 ) = 1 ) |
| 67 |
66
|
anidms |
⊢ ( 𝑚 ∈ 𝑀 → ( 𝑚 𝐼 𝑚 ) = 1 ) |
| 68 |
67
|
oveq2d |
⊢ ( 𝑚 ∈ 𝑀 → ( ( 𝑙 𝑋 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝐼 𝑚 ) ) = ( ( 𝑙 𝑋 𝑚 ) ( .r ‘ 𝑅 ) 1 ) ) |
| 69 |
68
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) → ( ( 𝑙 𝑋 𝑚 ) ( .r ‘ 𝑅 ) ( 𝑚 𝐼 𝑚 ) ) = ( ( 𝑙 𝑋 𝑚 ) ( .r ‘ 𝑅 ) 1 ) ) |
| 70 |
24
|
fovcdmda |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) → ( 𝑙 𝑋 𝑚 ) ∈ 𝐵 ) |
| 71 |
1 10 3
|
ringridm |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑙 𝑋 𝑚 ) ∈ 𝐵 ) → ( ( 𝑙 𝑋 𝑚 ) ( .r ‘ 𝑅 ) 1 ) = ( 𝑙 𝑋 𝑚 ) ) |
| 72 |
11 70 71
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) → ( ( 𝑙 𝑋 𝑚 ) ( .r ‘ 𝑅 ) 1 ) = ( 𝑙 𝑋 𝑚 ) ) |
| 73 |
57 69 72
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) → ( ( 𝑘 ∈ 𝑀 ↦ ( ( 𝑙 𝑋 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑘 𝐼 𝑚 ) ) ) ‘ 𝑚 ) = ( 𝑙 𝑋 𝑚 ) ) |
| 74 |
19 50 73
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀 ) ) → ( 𝑙 ( 𝑋 𝐹 𝐼 ) 𝑚 ) = ( 𝑙 𝑋 𝑚 ) ) |
| 75 |
74
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑙 ∈ 𝑁 ∀ 𝑚 ∈ 𝑀 ( 𝑙 ( 𝑋 𝐹 𝐼 ) 𝑚 ) = ( 𝑙 𝑋 𝑚 ) ) |
| 76 |
1 2 8 7 6 6 9 15
|
mamucl |
⊢ ( 𝜑 → ( 𝑋 𝐹 𝐼 ) ∈ ( 𝐵 ↑m ( 𝑁 × 𝑀 ) ) ) |
| 77 |
|
elmapi |
⊢ ( ( 𝑋 𝐹 𝐼 ) ∈ ( 𝐵 ↑m ( 𝑁 × 𝑀 ) ) → ( 𝑋 𝐹 𝐼 ) : ( 𝑁 × 𝑀 ) ⟶ 𝐵 ) |
| 78 |
76 77
|
syl |
⊢ ( 𝜑 → ( 𝑋 𝐹 𝐼 ) : ( 𝑁 × 𝑀 ) ⟶ 𝐵 ) |
| 79 |
78
|
ffnd |
⊢ ( 𝜑 → ( 𝑋 𝐹 𝐼 ) Fn ( 𝑁 × 𝑀 ) ) |
| 80 |
24
|
ffnd |
⊢ ( 𝜑 → 𝑋 Fn ( 𝑁 × 𝑀 ) ) |
| 81 |
|
eqfnov2 |
⊢ ( ( ( 𝑋 𝐹 𝐼 ) Fn ( 𝑁 × 𝑀 ) ∧ 𝑋 Fn ( 𝑁 × 𝑀 ) ) → ( ( 𝑋 𝐹 𝐼 ) = 𝑋 ↔ ∀ 𝑙 ∈ 𝑁 ∀ 𝑚 ∈ 𝑀 ( 𝑙 ( 𝑋 𝐹 𝐼 ) 𝑚 ) = ( 𝑙 𝑋 𝑚 ) ) ) |
| 82 |
79 80 81
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑋 𝐹 𝐼 ) = 𝑋 ↔ ∀ 𝑙 ∈ 𝑁 ∀ 𝑚 ∈ 𝑀 ( 𝑙 ( 𝑋 𝐹 𝐼 ) 𝑚 ) = ( 𝑙 𝑋 𝑚 ) ) ) |
| 83 |
75 82
|
mpbird |
⊢ ( 𝜑 → ( 𝑋 𝐹 𝐼 ) = 𝑋 ) |