Metamath Proof Explorer


Theorem mamurid

Description: The identity matrix (as operation in maps-to notation) is a right identity (for any matrix with the same number of columns). (Contributed by Stefan O'Rear, 3-Sep-2015) (Proof shortened by AV, 22-Jul-2019)

Ref Expression
Hypotheses mamumat1cl.b B=BaseR
mamumat1cl.r φRRing
mamumat1cl.o 1˙=1R
mamumat1cl.z 0˙=0R
mamumat1cl.i I=iM,jMifi=j1˙0˙
mamumat1cl.m φMFin
mamulid.n φNFin
mamurid.f F=RmaMulNMM
mamurid.x φXBN×M
Assertion mamurid φXFI=X

Proof

Step Hyp Ref Expression
1 mamumat1cl.b B=BaseR
2 mamumat1cl.r φRRing
3 mamumat1cl.o 1˙=1R
4 mamumat1cl.z 0˙=0R
5 mamumat1cl.i I=iM,jMifi=j1˙0˙
6 mamumat1cl.m φMFin
7 mamulid.n φNFin
8 mamurid.f F=RmaMulNMM
9 mamurid.x φXBN×M
10 eqid R=R
11 2 adantr φlNmMRRing
12 7 adantr φlNmMNFin
13 6 adantr φlNmMMFin
14 9 adantr φlNmMXBN×M
15 1 2 3 4 5 6 mamumat1cl φIBM×M
16 15 adantr φlNmMIBM×M
17 simprl φlNmMlN
18 simprr φlNmMmM
19 8 1 10 11 12 13 13 14 16 17 18 mamufv φlNmMlXFIm=RkMlXkRkIm
20 ringmnd RRingRMnd
21 11 20 syl φlNmMRMnd
22 2 ad2antrr φlNmMkMRRing
23 elmapi XBN×MX:N×MB
24 9 23 syl φX:N×MB
25 24 ad2antrr φlNmMkMX:N×MB
26 simplrl φlNmMkMlN
27 simpr φlNmMkMkM
28 25 26 27 fovrnd φlNmMkMlXkB
29 elmapi IBM×MI:M×MB
30 15 29 syl φI:M×MB
31 30 ad2antrr φlNmMkMI:M×MB
32 simplrr φlNmMkMmM
33 31 27 32 fovrnd φlNmMkMkImB
34 1 10 ringcl RRinglXkBkImBlXkRkImB
35 22 28 33 34 syl3anc φlNmMkMlXkRkImB
36 35 fmpttd φlNmMkMlXkRkIm:MB
37 simp2 φlNmMkMkmkM
38 32 3adant3 φlNmMkMkmmM
39 1 2 3 4 5 6 mat1comp kMmMkIm=ifk=m1˙0˙
40 37 38 39 syl2anc φlNmMkMkmkIm=ifk=m1˙0˙
41 ifnefalse kmifk=m1˙0˙=0˙
42 41 3ad2ant3 φlNmMkMkmifk=m1˙0˙=0˙
43 40 42 eqtrd φlNmMkMkmkIm=0˙
44 43 oveq2d φlNmMkMkmlXkRkIm=lXkR0˙
45 1 10 4 ringrz RRinglXkBlXkR0˙=0˙
46 22 28 45 syl2anc φlNmMkMlXkR0˙=0˙
47 46 3adant3 φlNmMkMkmlXkR0˙=0˙
48 44 47 eqtrd φlNmMkMkmlXkRkIm=0˙
49 48 13 suppsssn φlNmMkMlXkRkImsupp0˙m
50 1 4 21 13 18 36 49 gsumpt φlNmMRkMlXkRkIm=kMlXkRkImm
51 oveq2 k=mlXk=lXm
52 oveq1 k=mkIm=mIm
53 51 52 oveq12d k=mlXkRkIm=lXmRmIm
54 eqid kMlXkRkIm=kMlXkRkIm
55 ovex lXmRmImV
56 53 54 55 fvmpt mMkMlXkRkImm=lXmRmIm
57 56 ad2antll φlNmMkMlXkRkImm=lXmRmIm
58 equequ1 i=mi=jm=j
59 58 ifbid i=mifi=j1˙0˙=ifm=j1˙0˙
60 equequ2 j=mm=jm=m
61 60 ifbid j=mifm=j1˙0˙=ifm=m1˙0˙
62 eqid m=m
63 62 iftruei ifm=m1˙0˙=1˙
64 61 63 eqtrdi j=mifm=j1˙0˙=1˙
65 3 fvexi 1˙V
66 59 64 5 65 ovmpo mMmMmIm=1˙
67 66 anidms mMmIm=1˙
68 67 oveq2d mMlXmRmIm=lXmR1˙
69 68 ad2antll φlNmMlXmRmIm=lXmR1˙
70 24 fovrnda φlNmMlXmB
71 1 10 3 ringridm RRinglXmBlXmR1˙=lXm
72 11 70 71 syl2anc φlNmMlXmR1˙=lXm
73 57 69 72 3eqtrd φlNmMkMlXkRkImm=lXm
74 19 50 73 3eqtrd φlNmMlXFIm=lXm
75 74 ralrimivva φlNmMlXFIm=lXm
76 1 2 8 7 6 6 9 15 mamucl φXFIBN×M
77 elmapi XFIBN×MXFI:N×MB
78 76 77 syl φXFI:N×MB
79 78 ffnd φXFIFnN×M
80 24 ffnd φXFnN×M
81 eqfnov2 XFIFnN×MXFnN×MXFI=XlNmMlXFIm=lXm
82 79 80 81 syl2anc φXFI=XlNmMlXFIm=lXm
83 75 82 mpbird φXFI=X