Metamath Proof Explorer


Theorem mamucl

Description: Operation closure of matrix multiplication. (Contributed by Stefan O'Rear, 2-Sep-2015) (Proof shortened by AV, 23-Jul-2019)

Ref Expression
Hypotheses mamucl.b B=BaseR
mamucl.r φRRing
mamucl.f F=RmaMulMNP
mamucl.m φMFin
mamucl.n φNFin
mamucl.p φPFin
mamucl.x φXBM×N
mamucl.y φYBN×P
Assertion mamucl φXFYBM×P

Proof

Step Hyp Ref Expression
1 mamucl.b B=BaseR
2 mamucl.r φRRing
3 mamucl.f F=RmaMulMNP
4 mamucl.m φMFin
5 mamucl.n φNFin
6 mamucl.p φPFin
7 mamucl.x φXBM×N
8 mamucl.y φYBN×P
9 eqid R=R
10 3 1 9 2 4 5 6 7 8 mamuval φXFY=iM,kPRjNiXjRjYk
11 ringcmn RRingRCMnd
12 2 11 syl φRCMnd
13 12 adantr φiMkPRCMnd
14 5 adantr φiMkPNFin
15 2 ad2antrr φiMkPjNRRing
16 elmapi XBM×NX:M×NB
17 7 16 syl φX:M×NB
18 17 ad2antrr φiMkPjNX:M×NB
19 simplrl φiMkPjNiM
20 simpr φiMkPjNjN
21 18 19 20 fovcdmd φiMkPjNiXjB
22 elmapi YBN×PY:N×PB
23 8 22 syl φY:N×PB
24 23 ad2antrr φiMkPjNY:N×PB
25 simplrr φiMkPjNkP
26 24 20 25 fovcdmd φiMkPjNjYkB
27 1 9 ringcl RRingiXjBjYkBiXjRjYkB
28 15 21 26 27 syl3anc φiMkPjNiXjRjYkB
29 28 ralrimiva φiMkPjNiXjRjYkB
30 1 13 14 29 gsummptcl φiMkPRjNiXjRjYkB
31 30 ralrimivva φiMkPRjNiXjRjYkB
32 eqid iM,kPRjNiXjRjYk=iM,kPRjNiXjRjYk
33 32 fmpo iMkPRjNiXjRjYkBiM,kPRjNiXjRjYk:M×PB
34 1 fvexi BV
35 xpfi MFinPFinM×PFin
36 4 6 35 syl2anc φM×PFin
37 elmapg BVM×PFiniM,kPRjNiXjRjYkBM×PiM,kPRjNiXjRjYk:M×PB
38 34 36 37 sylancr φiM,kPRjNiXjRjYkBM×PiM,kPRjNiXjRjYk:M×PB
39 33 38 bitr4id φiMkPRjNiXjRjYkBiM,kPRjNiXjRjYkBM×P
40 31 39 mpbid φiM,kPRjNiXjRjYkBM×P
41 10 40 eqeltrd φXFYBM×P