Description: Operation closure of matrix multiplication. (Contributed by Stefan O'Rear, 2-Sep-2015) (Proof shortened by AV, 23-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mamucl.b | |
|
mamucl.r | |
||
mamucl.f | |
||
mamucl.m | |
||
mamucl.n | |
||
mamucl.p | |
||
mamucl.x | |
||
mamucl.y | |
||
Assertion | mamucl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mamucl.b | |
|
2 | mamucl.r | |
|
3 | mamucl.f | |
|
4 | mamucl.m | |
|
5 | mamucl.n | |
|
6 | mamucl.p | |
|
7 | mamucl.x | |
|
8 | mamucl.y | |
|
9 | eqid | |
|
10 | 3 1 9 2 4 5 6 7 8 | mamuval | |
11 | ringcmn | |
|
12 | 2 11 | syl | |
13 | 12 | adantr | |
14 | 5 | adantr | |
15 | 2 | ad2antrr | |
16 | elmapi | |
|
17 | 7 16 | syl | |
18 | 17 | ad2antrr | |
19 | simplrl | |
|
20 | simpr | |
|
21 | 18 19 20 | fovcdmd | |
22 | elmapi | |
|
23 | 8 22 | syl | |
24 | 23 | ad2antrr | |
25 | simplrr | |
|
26 | 24 20 25 | fovcdmd | |
27 | 1 9 | ringcl | |
28 | 15 21 26 27 | syl3anc | |
29 | 28 | ralrimiva | |
30 | 1 13 14 29 | gsummptcl | |
31 | 30 | ralrimivva | |
32 | eqid | |
|
33 | 32 | fmpo | |
34 | 1 | fvexi | |
35 | xpfi | |
|
36 | 4 6 35 | syl2anc | |
37 | elmapg | |
|
38 | 34 36 37 | sylancr | |
39 | 33 38 | bitr4id | |
40 | 31 39 | mpbid | |
41 | 10 40 | eqeltrd | |