Metamath Proof Explorer


Theorem mamulid

Description: The identity matrix (as operation in maps-to notation) is a left identity (for any matrix with the same number of rows). (Contributed by Stefan O'Rear, 3-Sep-2015) (Proof shortened by AV, 22-Jul-2019)

Ref Expression
Hypotheses mamumat1cl.b B=BaseR
mamumat1cl.r φRRing
mamumat1cl.o 1˙=1R
mamumat1cl.z 0˙=0R
mamumat1cl.i I=iM,jMifi=j1˙0˙
mamumat1cl.m φMFin
mamulid.n φNFin
mamulid.f F=RmaMulMMN
mamulid.x φXBM×N
Assertion mamulid φIFX=X

Proof

Step Hyp Ref Expression
1 mamumat1cl.b B=BaseR
2 mamumat1cl.r φRRing
3 mamumat1cl.o 1˙=1R
4 mamumat1cl.z 0˙=0R
5 mamumat1cl.i I=iM,jMifi=j1˙0˙
6 mamumat1cl.m φMFin
7 mamulid.n φNFin
8 mamulid.f F=RmaMulMMN
9 mamulid.x φXBM×N
10 eqid R=R
11 2 adantr φlMkNRRing
12 6 adantr φlMkNMFin
13 7 adantr φlMkNNFin
14 1 2 3 4 5 6 mamumat1cl φIBM×M
15 14 adantr φlMkNIBM×M
16 9 adantr φlMkNXBM×N
17 simprl φlMkNlM
18 simprr φlMkNkN
19 8 1 10 11 12 12 13 15 16 17 18 mamufv φlMkNlIFXk=RmMlImRmXk
20 ringmnd RRingRMnd
21 11 20 syl φlMkNRMnd
22 2 ad2antrr φlMkNmMRRing
23 elmapi IBM×MI:M×MB
24 14 23 syl φI:M×MB
25 24 ad2antrr φlMkNmMI:M×MB
26 simplrl φlMkNmMlM
27 simpr φlMkNmMmM
28 25 26 27 fovcdmd φlMkNmMlImB
29 elmapi XBM×NX:M×NB
30 9 29 syl φX:M×NB
31 30 ad2antrr φlMkNmMX:M×NB
32 simplrr φlMkNmMkN
33 31 27 32 fovcdmd φlMkNmMmXkB
34 1 10 ringcl RRinglImBmXkBlImRmXkB
35 22 28 33 34 syl3anc φlMkNmMlImRmXkB
36 35 fmpttd φlMkNmMlImRmXk:MB
37 26 3adant3 φlMkNmMmllM
38 simp2 φlMkNmMmlmM
39 1 2 3 4 5 6 mat1comp lMmMlIm=ifl=m1˙0˙
40 equcom l=mm=l
41 40 a1i lMmMl=mm=l
42 41 ifbid lMmMifl=m1˙0˙=ifm=l1˙0˙
43 39 42 eqtrd lMmMlIm=ifm=l1˙0˙
44 37 38 43 syl2anc φlMkNmMmllIm=ifm=l1˙0˙
45 ifnefalse mlifm=l1˙0˙=0˙
46 45 3ad2ant3 φlMkNmMmlifm=l1˙0˙=0˙
47 44 46 eqtrd φlMkNmMmllIm=0˙
48 47 oveq1d φlMkNmMmllImRmXk=0˙RmXk
49 1 10 4 ringlz RRingmXkB0˙RmXk=0˙
50 22 33 49 syl2anc φlMkNmM0˙RmXk=0˙
51 50 3adant3 φlMkNmMml0˙RmXk=0˙
52 48 51 eqtrd φlMkNmMmllImRmXk=0˙
53 52 12 suppsssn φlMkNmMlImRmXksupp0˙l
54 1 4 21 12 17 36 53 gsumpt φlMkNRmMlImRmXk=mMlImRmXkl
55 oveq2 m=llIm=lIl
56 oveq1 m=lmXk=lXk
57 55 56 oveq12d m=llImRmXk=lIlRlXk
58 eqid mMlImRmXk=mMlImRmXk
59 ovex lIlRlXkV
60 57 58 59 fvmpt lMmMlImRmXkl=lIlRlXk
61 60 ad2antrl φlMkNmMlImRmXkl=lIlRlXk
62 equequ1 i=li=jl=j
63 62 ifbid i=lifi=j1˙0˙=ifl=j1˙0˙
64 equequ2 j=ll=jl=l
65 64 ifbid j=lifl=j1˙0˙=ifl=l1˙0˙
66 equid l=l
67 66 iftruei ifl=l1˙0˙=1˙
68 65 67 eqtrdi j=lifl=j1˙0˙=1˙
69 3 fvexi 1˙V
70 63 68 5 69 ovmpo lMlMlIl=1˙
71 70 anidms lMlIl=1˙
72 71 ad2antrl φlMkNlIl=1˙
73 72 oveq1d φlMkNlIlRlXk=1˙RlXk
74 30 fovcdmda φlMkNlXkB
75 1 10 3 ringlidm RRinglXkB1˙RlXk=lXk
76 11 74 75 syl2anc φlMkN1˙RlXk=lXk
77 61 73 76 3eqtrd φlMkNmMlImRmXkl=lXk
78 19 54 77 3eqtrd φlMkNlIFXk=lXk
79 78 ralrimivva φlMkNlIFXk=lXk
80 1 2 8 6 6 7 14 9 mamucl φIFXBM×N
81 elmapi IFXBM×NIFX:M×NB
82 80 81 syl φIFX:M×NB
83 82 ffnd φIFXFnM×N
84 30 ffnd φXFnM×N
85 eqfnov2 IFXFnM×NXFnM×NIFX=XlMkNlIFXk=lXk
86 83 84 85 syl2anc φIFX=XlMkNlIFXk=lXk
87 79 86 mpbird φIFX=X