Metamath Proof Explorer


Theorem mamulid

Description: The identity matrix (as operation in maps-to notation) is a left identity (for any matrix with the same number of rows). (Contributed by Stefan O'Rear, 3-Sep-2015) (Proof shortened by AV, 22-Jul-2019)

Ref Expression
Hypotheses mamumat1cl.b B = Base R
mamumat1cl.r φ R Ring
mamumat1cl.o 1 ˙ = 1 R
mamumat1cl.z 0 ˙ = 0 R
mamumat1cl.i I = i M , j M if i = j 1 ˙ 0 ˙
mamumat1cl.m φ M Fin
mamulid.n φ N Fin
mamulid.f F = R maMul M M N
mamulid.x φ X B M × N
Assertion mamulid φ I F X = X

Proof

Step Hyp Ref Expression
1 mamumat1cl.b B = Base R
2 mamumat1cl.r φ R Ring
3 mamumat1cl.o 1 ˙ = 1 R
4 mamumat1cl.z 0 ˙ = 0 R
5 mamumat1cl.i I = i M , j M if i = j 1 ˙ 0 ˙
6 mamumat1cl.m φ M Fin
7 mamulid.n φ N Fin
8 mamulid.f F = R maMul M M N
9 mamulid.x φ X B M × N
10 eqid R = R
11 2 adantr φ l M k N R Ring
12 6 adantr φ l M k N M Fin
13 7 adantr φ l M k N N Fin
14 1 2 3 4 5 6 mamumat1cl φ I B M × M
15 14 adantr φ l M k N I B M × M
16 9 adantr φ l M k N X B M × N
17 simprl φ l M k N l M
18 simprr φ l M k N k N
19 8 1 10 11 12 12 13 15 16 17 18 mamufv φ l M k N l I F X k = R m M l I m R m X k
20 ringmnd R Ring R Mnd
21 11 20 syl φ l M k N R Mnd
22 2 ad2antrr φ l M k N m M R Ring
23 elmapi I B M × M I : M × M B
24 14 23 syl φ I : M × M B
25 24 ad2antrr φ l M k N m M I : M × M B
26 simplrl φ l M k N m M l M
27 simpr φ l M k N m M m M
28 25 26 27 fovrnd φ l M k N m M l I m B
29 elmapi X B M × N X : M × N B
30 9 29 syl φ X : M × N B
31 30 ad2antrr φ l M k N m M X : M × N B
32 simplrr φ l M k N m M k N
33 31 27 32 fovrnd φ l M k N m M m X k B
34 1 10 ringcl R Ring l I m B m X k B l I m R m X k B
35 22 28 33 34 syl3anc φ l M k N m M l I m R m X k B
36 35 fmpttd φ l M k N m M l I m R m X k : M B
37 26 3adant3 φ l M k N m M m l l M
38 simp2 φ l M k N m M m l m M
39 1 2 3 4 5 6 mat1comp l M m M l I m = if l = m 1 ˙ 0 ˙
40 equcom l = m m = l
41 40 a1i l M m M l = m m = l
42 41 ifbid l M m M if l = m 1 ˙ 0 ˙ = if m = l 1 ˙ 0 ˙
43 39 42 eqtrd l M m M l I m = if m = l 1 ˙ 0 ˙
44 37 38 43 syl2anc φ l M k N m M m l l I m = if m = l 1 ˙ 0 ˙
45 ifnefalse m l if m = l 1 ˙ 0 ˙ = 0 ˙
46 45 3ad2ant3 φ l M k N m M m l if m = l 1 ˙ 0 ˙ = 0 ˙
47 44 46 eqtrd φ l M k N m M m l l I m = 0 ˙
48 47 oveq1d φ l M k N m M m l l I m R m X k = 0 ˙ R m X k
49 1 10 4 ringlz R Ring m X k B 0 ˙ R m X k = 0 ˙
50 22 33 49 syl2anc φ l M k N m M 0 ˙ R m X k = 0 ˙
51 50 3adant3 φ l M k N m M m l 0 ˙ R m X k = 0 ˙
52 48 51 eqtrd φ l M k N m M m l l I m R m X k = 0 ˙
53 52 12 suppsssn φ l M k N m M l I m R m X k supp 0 ˙ l
54 1 4 21 12 17 36 53 gsumpt φ l M k N R m M l I m R m X k = m M l I m R m X k l
55 oveq2 m = l l I m = l I l
56 oveq1 m = l m X k = l X k
57 55 56 oveq12d m = l l I m R m X k = l I l R l X k
58 eqid m M l I m R m X k = m M l I m R m X k
59 ovex l I l R l X k V
60 57 58 59 fvmpt l M m M l I m R m X k l = l I l R l X k
61 60 ad2antrl φ l M k N m M l I m R m X k l = l I l R l X k
62 equequ1 i = l i = j l = j
63 62 ifbid i = l if i = j 1 ˙ 0 ˙ = if l = j 1 ˙ 0 ˙
64 equequ2 j = l l = j l = l
65 64 ifbid j = l if l = j 1 ˙ 0 ˙ = if l = l 1 ˙ 0 ˙
66 equid l = l
67 66 iftruei if l = l 1 ˙ 0 ˙ = 1 ˙
68 65 67 eqtrdi j = l if l = j 1 ˙ 0 ˙ = 1 ˙
69 3 fvexi 1 ˙ V
70 63 68 5 69 ovmpo l M l M l I l = 1 ˙
71 70 anidms l M l I l = 1 ˙
72 71 ad2antrl φ l M k N l I l = 1 ˙
73 72 oveq1d φ l M k N l I l R l X k = 1 ˙ R l X k
74 30 fovrnda φ l M k N l X k B
75 1 10 3 ringlidm R Ring l X k B 1 ˙ R l X k = l X k
76 11 74 75 syl2anc φ l M k N 1 ˙ R l X k = l X k
77 61 73 76 3eqtrd φ l M k N m M l I m R m X k l = l X k
78 19 54 77 3eqtrd φ l M k N l I F X k = l X k
79 78 ralrimivva φ l M k N l I F X k = l X k
80 1 2 8 6 6 7 14 9 mamucl φ I F X B M × N
81 elmapi I F X B M × N I F X : M × N B
82 80 81 syl φ I F X : M × N B
83 82 ffnd φ I F X Fn M × N
84 30 ffnd φ X Fn M × N
85 eqfnov2 I F X Fn M × N X Fn M × N I F X = X l M k N l I F X k = l X k
86 83 84 85 syl2anc φ I F X = X l M k N l I F X k = l X k
87 79 86 mpbird φ I F X = X