| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mamumat1cl.b |
|- B = ( Base ` R ) |
| 2 |
|
mamumat1cl.r |
|- ( ph -> R e. Ring ) |
| 3 |
|
mamumat1cl.o |
|- .1. = ( 1r ` R ) |
| 4 |
|
mamumat1cl.z |
|- .0. = ( 0g ` R ) |
| 5 |
|
mamumat1cl.i |
|- I = ( i e. M , j e. M |-> if ( i = j , .1. , .0. ) ) |
| 6 |
|
mamumat1cl.m |
|- ( ph -> M e. Fin ) |
| 7 |
|
mamulid.n |
|- ( ph -> N e. Fin ) |
| 8 |
|
mamulid.f |
|- F = ( R maMul <. M , M , N >. ) |
| 9 |
|
mamulid.x |
|- ( ph -> X e. ( B ^m ( M X. N ) ) ) |
| 10 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 11 |
2
|
adantr |
|- ( ( ph /\ ( l e. M /\ k e. N ) ) -> R e. Ring ) |
| 12 |
6
|
adantr |
|- ( ( ph /\ ( l e. M /\ k e. N ) ) -> M e. Fin ) |
| 13 |
7
|
adantr |
|- ( ( ph /\ ( l e. M /\ k e. N ) ) -> N e. Fin ) |
| 14 |
1 2 3 4 5 6
|
mamumat1cl |
|- ( ph -> I e. ( B ^m ( M X. M ) ) ) |
| 15 |
14
|
adantr |
|- ( ( ph /\ ( l e. M /\ k e. N ) ) -> I e. ( B ^m ( M X. M ) ) ) |
| 16 |
9
|
adantr |
|- ( ( ph /\ ( l e. M /\ k e. N ) ) -> X e. ( B ^m ( M X. N ) ) ) |
| 17 |
|
simprl |
|- ( ( ph /\ ( l e. M /\ k e. N ) ) -> l e. M ) |
| 18 |
|
simprr |
|- ( ( ph /\ ( l e. M /\ k e. N ) ) -> k e. N ) |
| 19 |
8 1 10 11 12 12 13 15 16 17 18
|
mamufv |
|- ( ( ph /\ ( l e. M /\ k e. N ) ) -> ( l ( I F X ) k ) = ( R gsum ( m e. M |-> ( ( l I m ) ( .r ` R ) ( m X k ) ) ) ) ) |
| 20 |
|
ringmnd |
|- ( R e. Ring -> R e. Mnd ) |
| 21 |
11 20
|
syl |
|- ( ( ph /\ ( l e. M /\ k e. N ) ) -> R e. Mnd ) |
| 22 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M ) -> R e. Ring ) |
| 23 |
|
elmapi |
|- ( I e. ( B ^m ( M X. M ) ) -> I : ( M X. M ) --> B ) |
| 24 |
14 23
|
syl |
|- ( ph -> I : ( M X. M ) --> B ) |
| 25 |
24
|
ad2antrr |
|- ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M ) -> I : ( M X. M ) --> B ) |
| 26 |
|
simplrl |
|- ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M ) -> l e. M ) |
| 27 |
|
simpr |
|- ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M ) -> m e. M ) |
| 28 |
25 26 27
|
fovcdmd |
|- ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M ) -> ( l I m ) e. B ) |
| 29 |
|
elmapi |
|- ( X e. ( B ^m ( M X. N ) ) -> X : ( M X. N ) --> B ) |
| 30 |
9 29
|
syl |
|- ( ph -> X : ( M X. N ) --> B ) |
| 31 |
30
|
ad2antrr |
|- ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M ) -> X : ( M X. N ) --> B ) |
| 32 |
|
simplrr |
|- ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M ) -> k e. N ) |
| 33 |
31 27 32
|
fovcdmd |
|- ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M ) -> ( m X k ) e. B ) |
| 34 |
1 10
|
ringcl |
|- ( ( R e. Ring /\ ( l I m ) e. B /\ ( m X k ) e. B ) -> ( ( l I m ) ( .r ` R ) ( m X k ) ) e. B ) |
| 35 |
22 28 33 34
|
syl3anc |
|- ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M ) -> ( ( l I m ) ( .r ` R ) ( m X k ) ) e. B ) |
| 36 |
35
|
fmpttd |
|- ( ( ph /\ ( l e. M /\ k e. N ) ) -> ( m e. M |-> ( ( l I m ) ( .r ` R ) ( m X k ) ) ) : M --> B ) |
| 37 |
26
|
3adant3 |
|- ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M /\ m =/= l ) -> l e. M ) |
| 38 |
|
simp2 |
|- ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M /\ m =/= l ) -> m e. M ) |
| 39 |
1 2 3 4 5 6
|
mat1comp |
|- ( ( l e. M /\ m e. M ) -> ( l I m ) = if ( l = m , .1. , .0. ) ) |
| 40 |
|
equcom |
|- ( l = m <-> m = l ) |
| 41 |
40
|
a1i |
|- ( ( l e. M /\ m e. M ) -> ( l = m <-> m = l ) ) |
| 42 |
41
|
ifbid |
|- ( ( l e. M /\ m e. M ) -> if ( l = m , .1. , .0. ) = if ( m = l , .1. , .0. ) ) |
| 43 |
39 42
|
eqtrd |
|- ( ( l e. M /\ m e. M ) -> ( l I m ) = if ( m = l , .1. , .0. ) ) |
| 44 |
37 38 43
|
syl2anc |
|- ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M /\ m =/= l ) -> ( l I m ) = if ( m = l , .1. , .0. ) ) |
| 45 |
|
ifnefalse |
|- ( m =/= l -> if ( m = l , .1. , .0. ) = .0. ) |
| 46 |
45
|
3ad2ant3 |
|- ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M /\ m =/= l ) -> if ( m = l , .1. , .0. ) = .0. ) |
| 47 |
44 46
|
eqtrd |
|- ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M /\ m =/= l ) -> ( l I m ) = .0. ) |
| 48 |
47
|
oveq1d |
|- ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M /\ m =/= l ) -> ( ( l I m ) ( .r ` R ) ( m X k ) ) = ( .0. ( .r ` R ) ( m X k ) ) ) |
| 49 |
1 10 4
|
ringlz |
|- ( ( R e. Ring /\ ( m X k ) e. B ) -> ( .0. ( .r ` R ) ( m X k ) ) = .0. ) |
| 50 |
22 33 49
|
syl2anc |
|- ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M ) -> ( .0. ( .r ` R ) ( m X k ) ) = .0. ) |
| 51 |
50
|
3adant3 |
|- ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M /\ m =/= l ) -> ( .0. ( .r ` R ) ( m X k ) ) = .0. ) |
| 52 |
48 51
|
eqtrd |
|- ( ( ( ph /\ ( l e. M /\ k e. N ) ) /\ m e. M /\ m =/= l ) -> ( ( l I m ) ( .r ` R ) ( m X k ) ) = .0. ) |
| 53 |
52 12
|
suppsssn |
|- ( ( ph /\ ( l e. M /\ k e. N ) ) -> ( ( m e. M |-> ( ( l I m ) ( .r ` R ) ( m X k ) ) ) supp .0. ) C_ { l } ) |
| 54 |
1 4 21 12 17 36 53
|
gsumpt |
|- ( ( ph /\ ( l e. M /\ k e. N ) ) -> ( R gsum ( m e. M |-> ( ( l I m ) ( .r ` R ) ( m X k ) ) ) ) = ( ( m e. M |-> ( ( l I m ) ( .r ` R ) ( m X k ) ) ) ` l ) ) |
| 55 |
|
oveq2 |
|- ( m = l -> ( l I m ) = ( l I l ) ) |
| 56 |
|
oveq1 |
|- ( m = l -> ( m X k ) = ( l X k ) ) |
| 57 |
55 56
|
oveq12d |
|- ( m = l -> ( ( l I m ) ( .r ` R ) ( m X k ) ) = ( ( l I l ) ( .r ` R ) ( l X k ) ) ) |
| 58 |
|
eqid |
|- ( m e. M |-> ( ( l I m ) ( .r ` R ) ( m X k ) ) ) = ( m e. M |-> ( ( l I m ) ( .r ` R ) ( m X k ) ) ) |
| 59 |
|
ovex |
|- ( ( l I l ) ( .r ` R ) ( l X k ) ) e. _V |
| 60 |
57 58 59
|
fvmpt |
|- ( l e. M -> ( ( m e. M |-> ( ( l I m ) ( .r ` R ) ( m X k ) ) ) ` l ) = ( ( l I l ) ( .r ` R ) ( l X k ) ) ) |
| 61 |
60
|
ad2antrl |
|- ( ( ph /\ ( l e. M /\ k e. N ) ) -> ( ( m e. M |-> ( ( l I m ) ( .r ` R ) ( m X k ) ) ) ` l ) = ( ( l I l ) ( .r ` R ) ( l X k ) ) ) |
| 62 |
|
equequ1 |
|- ( i = l -> ( i = j <-> l = j ) ) |
| 63 |
62
|
ifbid |
|- ( i = l -> if ( i = j , .1. , .0. ) = if ( l = j , .1. , .0. ) ) |
| 64 |
|
equequ2 |
|- ( j = l -> ( l = j <-> l = l ) ) |
| 65 |
64
|
ifbid |
|- ( j = l -> if ( l = j , .1. , .0. ) = if ( l = l , .1. , .0. ) ) |
| 66 |
|
equid |
|- l = l |
| 67 |
66
|
iftruei |
|- if ( l = l , .1. , .0. ) = .1. |
| 68 |
65 67
|
eqtrdi |
|- ( j = l -> if ( l = j , .1. , .0. ) = .1. ) |
| 69 |
3
|
fvexi |
|- .1. e. _V |
| 70 |
63 68 5 69
|
ovmpo |
|- ( ( l e. M /\ l e. M ) -> ( l I l ) = .1. ) |
| 71 |
70
|
anidms |
|- ( l e. M -> ( l I l ) = .1. ) |
| 72 |
71
|
ad2antrl |
|- ( ( ph /\ ( l e. M /\ k e. N ) ) -> ( l I l ) = .1. ) |
| 73 |
72
|
oveq1d |
|- ( ( ph /\ ( l e. M /\ k e. N ) ) -> ( ( l I l ) ( .r ` R ) ( l X k ) ) = ( .1. ( .r ` R ) ( l X k ) ) ) |
| 74 |
30
|
fovcdmda |
|- ( ( ph /\ ( l e. M /\ k e. N ) ) -> ( l X k ) e. B ) |
| 75 |
1 10 3
|
ringlidm |
|- ( ( R e. Ring /\ ( l X k ) e. B ) -> ( .1. ( .r ` R ) ( l X k ) ) = ( l X k ) ) |
| 76 |
11 74 75
|
syl2anc |
|- ( ( ph /\ ( l e. M /\ k e. N ) ) -> ( .1. ( .r ` R ) ( l X k ) ) = ( l X k ) ) |
| 77 |
61 73 76
|
3eqtrd |
|- ( ( ph /\ ( l e. M /\ k e. N ) ) -> ( ( m e. M |-> ( ( l I m ) ( .r ` R ) ( m X k ) ) ) ` l ) = ( l X k ) ) |
| 78 |
19 54 77
|
3eqtrd |
|- ( ( ph /\ ( l e. M /\ k e. N ) ) -> ( l ( I F X ) k ) = ( l X k ) ) |
| 79 |
78
|
ralrimivva |
|- ( ph -> A. l e. M A. k e. N ( l ( I F X ) k ) = ( l X k ) ) |
| 80 |
1 2 8 6 6 7 14 9
|
mamucl |
|- ( ph -> ( I F X ) e. ( B ^m ( M X. N ) ) ) |
| 81 |
|
elmapi |
|- ( ( I F X ) e. ( B ^m ( M X. N ) ) -> ( I F X ) : ( M X. N ) --> B ) |
| 82 |
80 81
|
syl |
|- ( ph -> ( I F X ) : ( M X. N ) --> B ) |
| 83 |
82
|
ffnd |
|- ( ph -> ( I F X ) Fn ( M X. N ) ) |
| 84 |
30
|
ffnd |
|- ( ph -> X Fn ( M X. N ) ) |
| 85 |
|
eqfnov2 |
|- ( ( ( I F X ) Fn ( M X. N ) /\ X Fn ( M X. N ) ) -> ( ( I F X ) = X <-> A. l e. M A. k e. N ( l ( I F X ) k ) = ( l X k ) ) ) |
| 86 |
83 84 85
|
syl2anc |
|- ( ph -> ( ( I F X ) = X <-> A. l e. M A. k e. N ( l ( I F X ) k ) = ( l X k ) ) ) |
| 87 |
79 86
|
mpbird |
|- ( ph -> ( I F X ) = X ) |