| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mat1bas.a |
|- A = ( N Mat R ) |
| 2 |
|
mat1bas.b |
|- B = ( Base ` A ) |
| 3 |
|
mat1bas.i |
|- .1. = ( 1r ` ( N Mat R ) ) |
| 4 |
|
eqid |
|- ( N Mat R ) = ( N Mat R ) |
| 5 |
4
|
matring |
|- ( ( N e. Fin /\ R e. Ring ) -> ( N Mat R ) e. Ring ) |
| 6 |
5
|
ancoms |
|- ( ( R e. Ring /\ N e. Fin ) -> ( N Mat R ) e. Ring ) |
| 7 |
1
|
fveq2i |
|- ( Base ` A ) = ( Base ` ( N Mat R ) ) |
| 8 |
2 7
|
eqtri |
|- B = ( Base ` ( N Mat R ) ) |
| 9 |
8 3
|
ringidcl |
|- ( ( N Mat R ) e. Ring -> .1. e. B ) |
| 10 |
6 9
|
syl |
|- ( ( R e. Ring /\ N e. Fin ) -> .1. e. B ) |