| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmat0opsc.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
pmat0opsc.c |
|- C = ( N Mat P ) |
| 3 |
|
pmat0opsc.a |
|- A = ( algSc ` P ) |
| 4 |
|
pmat0opsc.z |
|- .0. = ( 0g ` R ) |
| 5 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
| 6 |
1 2 5
|
pmat0op |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` C ) = ( i e. N , j e. N |-> ( 0g ` P ) ) ) |
| 7 |
1 3 4 5
|
ply1scl0 |
|- ( R e. Ring -> ( A ` .0. ) = ( 0g ` P ) ) |
| 8 |
7
|
eqcomd |
|- ( R e. Ring -> ( 0g ` P ) = ( A ` .0. ) ) |
| 9 |
8
|
adantl |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` P ) = ( A ` .0. ) ) |
| 10 |
9
|
mpoeq3dv |
|- ( ( N e. Fin /\ R e. Ring ) -> ( i e. N , j e. N |-> ( 0g ` P ) ) = ( i e. N , j e. N |-> ( A ` .0. ) ) ) |
| 11 |
6 10
|
eqtrd |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` C ) = ( i e. N , j e. N |-> ( A ` .0. ) ) ) |