| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmat0opsc.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | pmat0opsc.c |  |-  C = ( N Mat P ) | 
						
							| 3 |  | pmat0opsc.a |  |-  A = ( algSc ` P ) | 
						
							| 4 |  | pmat0opsc.z |  |-  .0. = ( 0g ` R ) | 
						
							| 5 |  | eqid |  |-  ( 0g ` P ) = ( 0g ` P ) | 
						
							| 6 | 1 2 5 | pmat0op |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` C ) = ( i e. N , j e. N |-> ( 0g ` P ) ) ) | 
						
							| 7 | 1 3 4 5 | ply1scl0 |  |-  ( R e. Ring -> ( A ` .0. ) = ( 0g ` P ) ) | 
						
							| 8 | 7 | eqcomd |  |-  ( R e. Ring -> ( 0g ` P ) = ( A ` .0. ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` P ) = ( A ` .0. ) ) | 
						
							| 10 | 9 | mpoeq3dv |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( i e. N , j e. N |-> ( 0g ` P ) ) = ( i e. N , j e. N |-> ( A ` .0. ) ) ) | 
						
							| 11 | 6 10 | eqtrd |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` C ) = ( i e. N , j e. N |-> ( A ` .0. ) ) ) |