Step |
Hyp |
Ref |
Expression |
1 |
|
ply1scl.p |
|- P = ( Poly1 ` R ) |
2 |
|
ply1scl.a |
|- A = ( algSc ` P ) |
3 |
|
ply1scl0.z |
|- .0. = ( 0g ` R ) |
4 |
|
ply1scl0.y |
|- Y = ( 0g ` P ) |
5 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
6 |
5 3
|
ring0cl |
|- ( R e. Ring -> .0. e. ( Base ` R ) ) |
7 |
1
|
ply1sca2 |
|- ( _I ` R ) = ( Scalar ` P ) |
8 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
9 |
8 5
|
strfvi |
|- ( Base ` R ) = ( Base ` ( _I ` R ) ) |
10 |
|
eqid |
|- ( .s ` P ) = ( .s ` P ) |
11 |
|
eqid |
|- ( 1r ` P ) = ( 1r ` P ) |
12 |
2 7 9 10 11
|
asclval |
|- ( .0. e. ( Base ` R ) -> ( A ` .0. ) = ( .0. ( .s ` P ) ( 1r ` P ) ) ) |
13 |
6 12
|
syl |
|- ( R e. Ring -> ( A ` .0. ) = ( .0. ( .s ` P ) ( 1r ` P ) ) ) |
14 |
|
fvi |
|- ( R e. Ring -> ( _I ` R ) = R ) |
15 |
14
|
fveq2d |
|- ( R e. Ring -> ( 0g ` ( _I ` R ) ) = ( 0g ` R ) ) |
16 |
3 15
|
eqtr4id |
|- ( R e. Ring -> .0. = ( 0g ` ( _I ` R ) ) ) |
17 |
16
|
oveq1d |
|- ( R e. Ring -> ( .0. ( .s ` P ) ( 1r ` P ) ) = ( ( 0g ` ( _I ` R ) ) ( .s ` P ) ( 1r ` P ) ) ) |
18 |
1
|
ply1lmod |
|- ( R e. Ring -> P e. LMod ) |
19 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
20 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
21 |
20 11
|
ringidcl |
|- ( P e. Ring -> ( 1r ` P ) e. ( Base ` P ) ) |
22 |
19 21
|
syl |
|- ( R e. Ring -> ( 1r ` P ) e. ( Base ` P ) ) |
23 |
|
eqid |
|- ( 0g ` ( _I ` R ) ) = ( 0g ` ( _I ` R ) ) |
24 |
20 7 10 23 4
|
lmod0vs |
|- ( ( P e. LMod /\ ( 1r ` P ) e. ( Base ` P ) ) -> ( ( 0g ` ( _I ` R ) ) ( .s ` P ) ( 1r ` P ) ) = Y ) |
25 |
18 22 24
|
syl2anc |
|- ( R e. Ring -> ( ( 0g ` ( _I ` R ) ) ( .s ` P ) ( 1r ` P ) ) = Y ) |
26 |
13 17 25
|
3eqtrd |
|- ( R e. Ring -> ( A ` .0. ) = Y ) |