| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1scl.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
ply1scl.a |
|- A = ( algSc ` P ) |
| 3 |
|
ply1scl0.z |
|- .0. = ( 0g ` R ) |
| 4 |
|
ply1scl0.y |
|- Y = ( 0g ` P ) |
| 5 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 6 |
5 3
|
ring0cl |
|- ( R e. Ring -> .0. e. ( Base ` R ) ) |
| 7 |
1
|
ply1sca2 |
|- ( _I ` R ) = ( Scalar ` P ) |
| 8 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
| 9 |
8 5
|
strfvi |
|- ( Base ` R ) = ( Base ` ( _I ` R ) ) |
| 10 |
|
eqid |
|- ( .s ` P ) = ( .s ` P ) |
| 11 |
|
eqid |
|- ( 1r ` P ) = ( 1r ` P ) |
| 12 |
2 7 9 10 11
|
asclval |
|- ( .0. e. ( Base ` R ) -> ( A ` .0. ) = ( .0. ( .s ` P ) ( 1r ` P ) ) ) |
| 13 |
6 12
|
syl |
|- ( R e. Ring -> ( A ` .0. ) = ( .0. ( .s ` P ) ( 1r ` P ) ) ) |
| 14 |
|
fvi |
|- ( R e. Ring -> ( _I ` R ) = R ) |
| 15 |
14
|
fveq2d |
|- ( R e. Ring -> ( 0g ` ( _I ` R ) ) = ( 0g ` R ) ) |
| 16 |
3 15
|
eqtr4id |
|- ( R e. Ring -> .0. = ( 0g ` ( _I ` R ) ) ) |
| 17 |
16
|
oveq1d |
|- ( R e. Ring -> ( .0. ( .s ` P ) ( 1r ` P ) ) = ( ( 0g ` ( _I ` R ) ) ( .s ` P ) ( 1r ` P ) ) ) |
| 18 |
1
|
ply1lmod |
|- ( R e. Ring -> P e. LMod ) |
| 19 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
| 20 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 21 |
20 11
|
ringidcl |
|- ( P e. Ring -> ( 1r ` P ) e. ( Base ` P ) ) |
| 22 |
19 21
|
syl |
|- ( R e. Ring -> ( 1r ` P ) e. ( Base ` P ) ) |
| 23 |
|
eqid |
|- ( 0g ` ( _I ` R ) ) = ( 0g ` ( _I ` R ) ) |
| 24 |
20 7 10 23 4
|
lmod0vs |
|- ( ( P e. LMod /\ ( 1r ` P ) e. ( Base ` P ) ) -> ( ( 0g ` ( _I ` R ) ) ( .s ` P ) ( 1r ` P ) ) = Y ) |
| 25 |
18 22 24
|
syl2anc |
|- ( R e. Ring -> ( ( 0g ` ( _I ` R ) ) ( .s ` P ) ( 1r ` P ) ) = Y ) |
| 26 |
13 17 25
|
3eqtrd |
|- ( R e. Ring -> ( A ` .0. ) = Y ) |