| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1scl.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
ply1scl.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
| 3 |
|
ply1scl0.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
|
ply1scl0.y |
⊢ 𝑌 = ( 0g ‘ 𝑃 ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 6 |
5 3
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 7 |
1
|
ply1sca2 |
⊢ ( I ‘ 𝑅 ) = ( Scalar ‘ 𝑃 ) |
| 8 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
| 9 |
8 5
|
strfvi |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( I ‘ 𝑅 ) ) |
| 10 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
| 11 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
| 12 |
2 7 9 10 11
|
asclval |
⊢ ( 0 ∈ ( Base ‘ 𝑅 ) → ( 𝐴 ‘ 0 ) = ( 0 ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) |
| 13 |
6 12
|
syl |
⊢ ( 𝑅 ∈ Ring → ( 𝐴 ‘ 0 ) = ( 0 ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) |
| 14 |
|
fvi |
⊢ ( 𝑅 ∈ Ring → ( I ‘ 𝑅 ) = 𝑅 ) |
| 15 |
14
|
fveq2d |
⊢ ( 𝑅 ∈ Ring → ( 0g ‘ ( I ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 16 |
3 15
|
eqtr4id |
⊢ ( 𝑅 ∈ Ring → 0 = ( 0g ‘ ( I ‘ 𝑅 ) ) ) |
| 17 |
16
|
oveq1d |
⊢ ( 𝑅 ∈ Ring → ( 0 ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) = ( ( 0g ‘ ( I ‘ 𝑅 ) ) ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) |
| 18 |
1
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
| 19 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 20 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 21 |
20 11
|
ringidcl |
⊢ ( 𝑃 ∈ Ring → ( 1r ‘ 𝑃 ) ∈ ( Base ‘ 𝑃 ) ) |
| 22 |
19 21
|
syl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑃 ) ∈ ( Base ‘ 𝑃 ) ) |
| 23 |
|
eqid |
⊢ ( 0g ‘ ( I ‘ 𝑅 ) ) = ( 0g ‘ ( I ‘ 𝑅 ) ) |
| 24 |
20 7 10 23 4
|
lmod0vs |
⊢ ( ( 𝑃 ∈ LMod ∧ ( 1r ‘ 𝑃 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 0g ‘ ( I ‘ 𝑅 ) ) ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) = 𝑌 ) |
| 25 |
18 22 24
|
syl2anc |
⊢ ( 𝑅 ∈ Ring → ( ( 0g ‘ ( I ‘ 𝑅 ) ) ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) = 𝑌 ) |
| 26 |
13 17 25
|
3eqtrd |
⊢ ( 𝑅 ∈ Ring → ( 𝐴 ‘ 0 ) = 𝑌 ) |