| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmat0opsc.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | pmat0opsc.c |  |-  C = ( N Mat P ) | 
						
							| 3 |  | pmat0opsc.a |  |-  A = ( algSc ` P ) | 
						
							| 4 |  | pmat0opsc.z |  |-  .0. = ( 0g ` R ) | 
						
							| 5 |  | pmat1opsc.o |  |-  .1. = ( 1r ` R ) | 
						
							| 6 |  | eqid |  |-  ( 0g ` P ) = ( 0g ` P ) | 
						
							| 7 |  | eqid |  |-  ( 1r ` P ) = ( 1r ` P ) | 
						
							| 8 | 1 2 6 7 | pmat1op |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` C ) = ( i e. N , j e. N |-> if ( i = j , ( 1r ` P ) , ( 0g ` P ) ) ) ) | 
						
							| 9 | 1 3 5 7 | ply1scl1 |  |-  ( R e. Ring -> ( A ` .1. ) = ( 1r ` P ) ) | 
						
							| 10 | 9 | eqcomd |  |-  ( R e. Ring -> ( 1r ` P ) = ( A ` .1. ) ) | 
						
							| 11 | 1 3 4 6 | ply1scl0 |  |-  ( R e. Ring -> ( A ` .0. ) = ( 0g ` P ) ) | 
						
							| 12 | 11 | eqcomd |  |-  ( R e. Ring -> ( 0g ` P ) = ( A ` .0. ) ) | 
						
							| 13 | 10 12 | ifeq12d |  |-  ( R e. Ring -> if ( i = j , ( 1r ` P ) , ( 0g ` P ) ) = if ( i = j , ( A ` .1. ) , ( A ` .0. ) ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( N e. Fin /\ R e. Ring ) -> if ( i = j , ( 1r ` P ) , ( 0g ` P ) ) = if ( i = j , ( A ` .1. ) , ( A ` .0. ) ) ) | 
						
							| 15 | 14 | mpoeq3dv |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( i e. N , j e. N |-> if ( i = j , ( 1r ` P ) , ( 0g ` P ) ) ) = ( i e. N , j e. N |-> if ( i = j , ( A ` .1. ) , ( A ` .0. ) ) ) ) | 
						
							| 16 | 8 15 | eqtrd |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` C ) = ( i e. N , j e. N |-> if ( i = j , ( A ` .1. ) , ( A ` .0. ) ) ) ) |