Description: The identity polynomial matrix over a ring represented as operation. (Contributed by AV, 16-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmatring.p | |- P = ( Poly1 ` R ) | |
| pmatring.c | |- C = ( N Mat P ) | ||
| pmat0op.z | |- .0. = ( 0g ` P ) | ||
| pmat1op.o | |- .1. = ( 1r ` P ) | ||
| Assertion | pmat1op | |- ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` C ) = ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pmatring.p | |- P = ( Poly1 ` R ) | |
| 2 | pmatring.c | |- C = ( N Mat P ) | |
| 3 | pmat0op.z | |- .0. = ( 0g ` P ) | |
| 4 | pmat1op.o | |- .1. = ( 1r ` P ) | |
| 5 | 1 | ply1ring | |- ( R e. Ring -> P e. Ring ) | 
| 6 | 2 4 3 | mat1 | |- ( ( N e. Fin /\ P e. Ring ) -> ( 1r ` C ) = ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) | 
| 7 | 5 6 | sylan2 | |- ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` C ) = ( i e. N , j e. N |-> if ( i = j , .1. , .0. ) ) ) |