Description: The identity polynomial matrix over a ring represented as operation. (Contributed by AV, 16-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmatring.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| pmatring.c | ⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) | ||
| pmat0op.z | ⊢ 0 = ( 0g ‘ 𝑃 ) | ||
| pmat1op.o | ⊢ 1 = ( 1r ‘ 𝑃 ) | ||
| Assertion | pmat1op | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ 𝐶 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pmatring.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | pmatring.c | ⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) | |
| 3 | pmat0op.z | ⊢ 0 = ( 0g ‘ 𝑃 ) | |
| 4 | pmat1op.o | ⊢ 1 = ( 1r ‘ 𝑃 ) | |
| 5 | 1 | ply1ring | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) | 
| 6 | 2 4 3 | mat1 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) → ( 1r ‘ 𝐶 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ) | 
| 7 | 5 6 | sylan2 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ 𝐶 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 1 , 0 ) ) ) |