Step |
Hyp |
Ref |
Expression |
1 |
|
pmat0opsc.p |
|- P = ( Poly1 ` R ) |
2 |
|
pmat0opsc.c |
|- C = ( N Mat P ) |
3 |
|
pmat0opsc.a |
|- A = ( algSc ` P ) |
4 |
|
pmat0opsc.z |
|- .0. = ( 0g ` R ) |
5 |
|
pmat1opsc.o |
|- .1. = ( 1r ` R ) |
6 |
|
pmat1ovscd.n |
|- ( ph -> N e. Fin ) |
7 |
|
pmat1ovscd.r |
|- ( ph -> R e. Ring ) |
8 |
|
pmat1ovscd.i |
|- ( ph -> I e. N ) |
9 |
|
pmat1ovscd.j |
|- ( ph -> J e. N ) |
10 |
|
pmat1ovscd.u |
|- U = ( 1r ` C ) |
11 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
12 |
|
eqid |
|- ( 1r ` P ) = ( 1r ` P ) |
13 |
1 2 11 12 6 7 8 9 10
|
pmat1ovd |
|- ( ph -> ( I U J ) = if ( I = J , ( 1r ` P ) , ( 0g ` P ) ) ) |
14 |
1 3 5 12
|
ply1scl1 |
|- ( R e. Ring -> ( A ` .1. ) = ( 1r ` P ) ) |
15 |
7 14
|
syl |
|- ( ph -> ( A ` .1. ) = ( 1r ` P ) ) |
16 |
15
|
eqcomd |
|- ( ph -> ( 1r ` P ) = ( A ` .1. ) ) |
17 |
1 3 4 11
|
ply1scl0 |
|- ( R e. Ring -> ( A ` .0. ) = ( 0g ` P ) ) |
18 |
7 17
|
syl |
|- ( ph -> ( A ` .0. ) = ( 0g ` P ) ) |
19 |
18
|
eqcomd |
|- ( ph -> ( 0g ` P ) = ( A ` .0. ) ) |
20 |
16 19
|
ifeq12d |
|- ( ph -> if ( I = J , ( 1r ` P ) , ( 0g ` P ) ) = if ( I = J , ( A ` .1. ) , ( A ` .0. ) ) ) |
21 |
13 20
|
eqtrd |
|- ( ph -> ( I U J ) = if ( I = J , ( A ` .1. ) , ( A ` .0. ) ) ) |