Metamath Proof Explorer


Theorem pmat1ovscd

Description: Entries of the identity polynomial matrix over a ring represented with "lifted scalars", deduction form. (Contributed by AV, 16-Nov-2019)

Ref Expression
Hypotheses pmat0opsc.p
|- P = ( Poly1 ` R )
pmat0opsc.c
|- C = ( N Mat P )
pmat0opsc.a
|- A = ( algSc ` P )
pmat0opsc.z
|- .0. = ( 0g ` R )
pmat1opsc.o
|- .1. = ( 1r ` R )
pmat1ovscd.n
|- ( ph -> N e. Fin )
pmat1ovscd.r
|- ( ph -> R e. Ring )
pmat1ovscd.i
|- ( ph -> I e. N )
pmat1ovscd.j
|- ( ph -> J e. N )
pmat1ovscd.u
|- U = ( 1r ` C )
Assertion pmat1ovscd
|- ( ph -> ( I U J ) = if ( I = J , ( A ` .1. ) , ( A ` .0. ) ) )

Proof

Step Hyp Ref Expression
1 pmat0opsc.p
 |-  P = ( Poly1 ` R )
2 pmat0opsc.c
 |-  C = ( N Mat P )
3 pmat0opsc.a
 |-  A = ( algSc ` P )
4 pmat0opsc.z
 |-  .0. = ( 0g ` R )
5 pmat1opsc.o
 |-  .1. = ( 1r ` R )
6 pmat1ovscd.n
 |-  ( ph -> N e. Fin )
7 pmat1ovscd.r
 |-  ( ph -> R e. Ring )
8 pmat1ovscd.i
 |-  ( ph -> I e. N )
9 pmat1ovscd.j
 |-  ( ph -> J e. N )
10 pmat1ovscd.u
 |-  U = ( 1r ` C )
11 eqid
 |-  ( 0g ` P ) = ( 0g ` P )
12 eqid
 |-  ( 1r ` P ) = ( 1r ` P )
13 1 2 11 12 6 7 8 9 10 pmat1ovd
 |-  ( ph -> ( I U J ) = if ( I = J , ( 1r ` P ) , ( 0g ` P ) ) )
14 1 3 5 12 ply1scl1
 |-  ( R e. Ring -> ( A ` .1. ) = ( 1r ` P ) )
15 7 14 syl
 |-  ( ph -> ( A ` .1. ) = ( 1r ` P ) )
16 15 eqcomd
 |-  ( ph -> ( 1r ` P ) = ( A ` .1. ) )
17 1 3 4 11 ply1scl0
 |-  ( R e. Ring -> ( A ` .0. ) = ( 0g ` P ) )
18 7 17 syl
 |-  ( ph -> ( A ` .0. ) = ( 0g ` P ) )
19 18 eqcomd
 |-  ( ph -> ( 0g ` P ) = ( A ` .0. ) )
20 16 19 ifeq12d
 |-  ( ph -> if ( I = J , ( 1r ` P ) , ( 0g ` P ) ) = if ( I = J , ( A ` .1. ) , ( A ` .0. ) ) )
21 13 20 eqtrd
 |-  ( ph -> ( I U J ) = if ( I = J , ( A ` .1. ) , ( A ` .0. ) ) )