| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmat0opsc.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
pmat0opsc.c |
|- C = ( N Mat P ) |
| 3 |
|
pmat0opsc.a |
|- A = ( algSc ` P ) |
| 4 |
|
pmat0opsc.z |
|- .0. = ( 0g ` R ) |
| 5 |
|
pmat1opsc.o |
|- .1. = ( 1r ` R ) |
| 6 |
|
pmat1ovscd.n |
|- ( ph -> N e. Fin ) |
| 7 |
|
pmat1ovscd.r |
|- ( ph -> R e. Ring ) |
| 8 |
|
pmat1ovscd.i |
|- ( ph -> I e. N ) |
| 9 |
|
pmat1ovscd.j |
|- ( ph -> J e. N ) |
| 10 |
|
pmat1ovscd.u |
|- U = ( 1r ` C ) |
| 11 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
| 12 |
|
eqid |
|- ( 1r ` P ) = ( 1r ` P ) |
| 13 |
1 2 11 12 6 7 8 9 10
|
pmat1ovd |
|- ( ph -> ( I U J ) = if ( I = J , ( 1r ` P ) , ( 0g ` P ) ) ) |
| 14 |
1 3 5 12
|
ply1scl1 |
|- ( R e. Ring -> ( A ` .1. ) = ( 1r ` P ) ) |
| 15 |
7 14
|
syl |
|- ( ph -> ( A ` .1. ) = ( 1r ` P ) ) |
| 16 |
15
|
eqcomd |
|- ( ph -> ( 1r ` P ) = ( A ` .1. ) ) |
| 17 |
1 3 4 11
|
ply1scl0 |
|- ( R e. Ring -> ( A ` .0. ) = ( 0g ` P ) ) |
| 18 |
7 17
|
syl |
|- ( ph -> ( A ` .0. ) = ( 0g ` P ) ) |
| 19 |
18
|
eqcomd |
|- ( ph -> ( 0g ` P ) = ( A ` .0. ) ) |
| 20 |
16 19
|
ifeq12d |
|- ( ph -> if ( I = J , ( 1r ` P ) , ( 0g ` P ) ) = if ( I = J , ( A ` .1. ) , ( A ` .0. ) ) ) |
| 21 |
13 20
|
eqtrd |
|- ( ph -> ( I U J ) = if ( I = J , ( A ` .1. ) , ( A ` .0. ) ) ) |