| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmat0opsc.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
pmat0opsc.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
| 3 |
|
pmat0opsc.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
| 4 |
|
pmat0opsc.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 5 |
|
pmat1opsc.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 6 |
|
pmat1ovscd.n |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
| 7 |
|
pmat1ovscd.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 8 |
|
pmat1ovscd.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑁 ) |
| 9 |
|
pmat1ovscd.j |
⊢ ( 𝜑 → 𝐽 ∈ 𝑁 ) |
| 10 |
|
pmat1ovscd.u |
⊢ 𝑈 = ( 1r ‘ 𝐶 ) |
| 11 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 12 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
| 13 |
1 2 11 12 6 7 8 9 10
|
pmat1ovd |
⊢ ( 𝜑 → ( 𝐼 𝑈 𝐽 ) = if ( 𝐼 = 𝐽 , ( 1r ‘ 𝑃 ) , ( 0g ‘ 𝑃 ) ) ) |
| 14 |
1 3 5 12
|
ply1scl1 |
⊢ ( 𝑅 ∈ Ring → ( 𝐴 ‘ 1 ) = ( 1r ‘ 𝑃 ) ) |
| 15 |
7 14
|
syl |
⊢ ( 𝜑 → ( 𝐴 ‘ 1 ) = ( 1r ‘ 𝑃 ) ) |
| 16 |
15
|
eqcomd |
⊢ ( 𝜑 → ( 1r ‘ 𝑃 ) = ( 𝐴 ‘ 1 ) ) |
| 17 |
1 3 4 11
|
ply1scl0 |
⊢ ( 𝑅 ∈ Ring → ( 𝐴 ‘ 0 ) = ( 0g ‘ 𝑃 ) ) |
| 18 |
7 17
|
syl |
⊢ ( 𝜑 → ( 𝐴 ‘ 0 ) = ( 0g ‘ 𝑃 ) ) |
| 19 |
18
|
eqcomd |
⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) = ( 𝐴 ‘ 0 ) ) |
| 20 |
16 19
|
ifeq12d |
⊢ ( 𝜑 → if ( 𝐼 = 𝐽 , ( 1r ‘ 𝑃 ) , ( 0g ‘ 𝑃 ) ) = if ( 𝐼 = 𝐽 , ( 𝐴 ‘ 1 ) , ( 𝐴 ‘ 0 ) ) ) |
| 21 |
13 20
|
eqtrd |
⊢ ( 𝜑 → ( 𝐼 𝑈 𝐽 ) = if ( 𝐼 = 𝐽 , ( 𝐴 ‘ 1 ) , ( 𝐴 ‘ 0 ) ) ) |