| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmatcoe1fsupp.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | pmatcoe1fsupp.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | pmatcoe1fsupp.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 4 |  | pmatcoe1fsupp.0 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 5 |  | ssrab2 | ⊢ { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  }  ⊆  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 ) | 
						
							| 6 | 5 | a1i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  }  ⊆  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 ) ) | 
						
							| 7 | 6 | olcd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ⊆  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∨  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  }  ⊆  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 ) ) ) | 
						
							| 8 |  | inss | ⊢ ( ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ⊆  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∨  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  }  ⊆  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 ) )  →  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } )  ⊆  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 ) ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } )  ⊆  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 ) ) | 
						
							| 10 |  | xpfi | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑁  ∈  Fin )  →  ( 𝑁  ×  𝑁 )  ∈  Fin ) | 
						
							| 11 | 10 | anidms | ⊢ ( 𝑁  ∈  Fin  →  ( 𝑁  ×  𝑁 )  ∈  Fin ) | 
						
							| 12 |  | snfi | ⊢ { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∈  Fin | 
						
							| 13 | 12 | a1i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑢  ∈  ( 𝑁  ×  𝑁 ) )  →  { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∈  Fin ) | 
						
							| 14 | 13 | ralrimiva | ⊢ ( 𝑁  ∈  Fin  →  ∀ 𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∈  Fin ) | 
						
							| 15 | 11 14 | jca | ⊢ ( 𝑁  ∈  Fin  →  ( ( 𝑁  ×  𝑁 )  ∈  Fin  ∧  ∀ 𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∈  Fin ) ) | 
						
							| 16 | 15 | 3ad2ant1 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ( 𝑁  ×  𝑁 )  ∈  Fin  ∧  ∀ 𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∈  Fin ) ) | 
						
							| 17 |  | iunfi | ⊢ ( ( ( 𝑁  ×  𝑁 )  ∈  Fin  ∧  ∀ 𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∈  Fin )  →  ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∈  Fin ) | 
						
							| 18 |  | infi | ⊢ ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∈  Fin  →  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } )  ∈  Fin ) | 
						
							| 19 | 16 17 18 | 3syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } )  ∈  Fin ) | 
						
							| 20 |  | fvex | ⊢ ( 0g ‘ 𝑅 )  ∈  V | 
						
							| 21 | 4 20 | eqeltri | ⊢  0   ∈  V | 
						
							| 22 | 21 | a1i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →   0   ∈  V ) | 
						
							| 23 |  | elin | ⊢ ( 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } )  ↔  ( 𝑤  ∈  ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∧  𝑤  ∈  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) ) | 
						
							| 24 |  | breq1 | ⊢ ( 𝑣  =  𝑤  →  ( 𝑣  finSupp   0   ↔  𝑤  finSupp   0  ) ) | 
						
							| 25 | 24 | elrab | ⊢ ( 𝑤  ∈  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  }  ↔  ( 𝑤  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∧  𝑤  finSupp   0  ) ) | 
						
							| 26 | 25 | simprbi | ⊢ ( 𝑤  ∈  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  }  →  𝑤  finSupp   0  ) | 
						
							| 27 | 23 26 | simplbiim | ⊢ ( 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } )  →  𝑤  finSupp   0  ) | 
						
							| 28 | 27 | rgen | ⊢ ∀ 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) 𝑤  finSupp   0 | 
						
							| 29 | 28 | a1i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ∀ 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) 𝑤  finSupp   0  ) | 
						
							| 30 |  | fsuppmapnn0fiub0 | ⊢ ( ( ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } )  ⊆  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∧  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } )  ∈  Fin  ∧   0   ∈  V )  →  ( ∀ 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) 𝑤  finSupp   0   →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) ∀ 𝑧  ∈  ℕ0 ( 𝑠  <  𝑧  →  ( 𝑤 ‘ 𝑧 )  =   0  ) ) ) | 
						
							| 31 | 30 | imp | ⊢ ( ( ( ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } )  ⊆  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∧  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } )  ∈  Fin  ∧   0   ∈  V )  ∧  ∀ 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) 𝑤  finSupp   0  )  →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) ∀ 𝑧  ∈  ℕ0 ( 𝑠  <  𝑧  →  ( 𝑤 ‘ 𝑧 )  =   0  ) ) | 
						
							| 32 | 9 19 22 29 31 | syl31anc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) ∀ 𝑧  ∈  ℕ0 ( 𝑠  <  𝑧  →  ( 𝑤 ‘ 𝑧 )  =   0  ) ) | 
						
							| 33 |  | opelxpi | ⊢ ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  〈 𝑖 ,  𝑗 〉  ∈  ( 𝑁  ×  𝑁 ) ) | 
						
							| 34 |  | df-ov | ⊢ ( 𝑖 𝑀 𝑗 )  =  ( 𝑀 ‘ 〈 𝑖 ,  𝑗 〉 ) | 
						
							| 35 | 34 | fveq2i | ⊢ ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  =  ( coe1 ‘ ( 𝑀 ‘ 〈 𝑖 ,  𝑗 〉 ) ) | 
						
							| 36 |  | fvex | ⊢ ( coe1 ‘ ( 𝑀 ‘ 〈 𝑖 ,  𝑗 〉 ) )  ∈  V | 
						
							| 37 | 36 | snid | ⊢ ( coe1 ‘ ( 𝑀 ‘ 〈 𝑖 ,  𝑗 〉 ) )  ∈  { ( coe1 ‘ ( 𝑀 ‘ 〈 𝑖 ,  𝑗 〉 ) ) } | 
						
							| 38 | 35 37 | eqeltri | ⊢ ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  ∈  { ( coe1 ‘ ( 𝑀 ‘ 〈 𝑖 ,  𝑗 〉 ) ) } | 
						
							| 39 | 38 | a1i | ⊢ ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  ∈  { ( coe1 ‘ ( 𝑀 ‘ 〈 𝑖 ,  𝑗 〉 ) ) } ) | 
						
							| 40 |  | 2fveq3 | ⊢ ( 𝑢  =  〈 𝑖 ,  𝑗 〉  →  ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) )  =  ( coe1 ‘ ( 𝑀 ‘ 〈 𝑖 ,  𝑗 〉 ) ) ) | 
						
							| 41 | 40 | sneqd | ⊢ ( 𝑢  =  〈 𝑖 ,  𝑗 〉  →  { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  =  { ( coe1 ‘ ( 𝑀 ‘ 〈 𝑖 ,  𝑗 〉 ) ) } ) | 
						
							| 42 | 41 | eliuni | ⊢ ( ( 〈 𝑖 ,  𝑗 〉  ∈  ( 𝑁  ×  𝑁 )  ∧  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  ∈  { ( coe1 ‘ ( 𝑀 ‘ 〈 𝑖 ,  𝑗 〉 ) ) } )  →  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  ∈  ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ) | 
						
							| 43 | 33 39 42 | syl2anc | ⊢ ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  ∈  ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ) | 
						
							| 44 | 43 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  ∈  ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) } ) | 
						
							| 45 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 46 |  | simprl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑖  ∈  𝑁 ) | 
						
							| 47 |  | simprr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑗  ∈  𝑁 ) | 
						
							| 48 | 3 | eleq2i | ⊢ ( 𝑀  ∈  𝐵  ↔  𝑀  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 49 | 48 | biimpi | ⊢ ( 𝑀  ∈  𝐵  →  𝑀  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 50 | 49 | 3ad2ant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝑀  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 51 | 50 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑀  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 52 | 51 3 | eleqtrrdi | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑀  ∈  𝐵 ) | 
						
							| 53 | 2 45 3 46 47 52 | matecld | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑖 𝑀 𝑗 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 54 |  | eqid | ⊢ ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  =  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) | 
						
							| 55 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 56 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 57 | 54 45 1 55 56 | coe1fsupp | ⊢ ( ( 𝑖 𝑀 𝑗 )  ∈  ( Base ‘ 𝑃 )  →  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  ∈  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp  ( 0g ‘ 𝑅 ) } ) | 
						
							| 58 | 53 57 | syl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  ∈  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp  ( 0g ‘ 𝑅 ) } ) | 
						
							| 59 | 4 | a1i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →   0   =  ( 0g ‘ 𝑅 ) ) | 
						
							| 60 | 59 | breq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑣  finSupp   0   ↔  𝑣  finSupp  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 61 | 60 | rabbidv | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  }  =  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp  ( 0g ‘ 𝑅 ) } ) | 
						
							| 62 | 61 | eleq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  ∈  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  }  ↔  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  ∈  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp  ( 0g ‘ 𝑅 ) } ) ) | 
						
							| 63 | 62 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  ∈  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  }  ↔  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  ∈  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp  ( 0g ‘ 𝑅 ) } ) ) | 
						
							| 64 | 58 63 | mpbird | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  ∈  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) | 
						
							| 65 | 44 64 | elind | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) ) | 
						
							| 66 |  | simplr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑥  ∈  ℕ0 ) | 
						
							| 67 |  | fveq1 | ⊢ ( 𝑤  =  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  →  ( 𝑤 ‘ 𝑧 )  =  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑧 ) ) | 
						
							| 68 | 67 | eqeq1d | ⊢ ( 𝑤  =  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  →  ( ( 𝑤 ‘ 𝑧 )  =   0   ↔  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑧 )  =   0  ) ) | 
						
							| 69 | 68 | imbi2d | ⊢ ( 𝑤  =  ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  →  ( ( 𝑠  <  𝑧  →  ( 𝑤 ‘ 𝑧 )  =   0  )  ↔  ( 𝑠  <  𝑧  →  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑧 )  =   0  ) ) ) | 
						
							| 70 |  | breq2 | ⊢ ( 𝑧  =  𝑥  →  ( 𝑠  <  𝑧  ↔  𝑠  <  𝑥 ) ) | 
						
							| 71 |  | fveqeq2 | ⊢ ( 𝑧  =  𝑥  →  ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑧 )  =   0   ↔  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =   0  ) ) | 
						
							| 72 | 70 71 | imbi12d | ⊢ ( 𝑧  =  𝑥  →  ( ( 𝑠  <  𝑧  →  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑧 )  =   0  )  ↔  ( 𝑠  <  𝑥  →  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =   0  ) ) ) | 
						
							| 73 | 69 72 | rspc2v | ⊢ ( ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) )  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } )  ∧  𝑥  ∈  ℕ0 )  →  ( ∀ 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) ∀ 𝑧  ∈  ℕ0 ( 𝑠  <  𝑧  →  ( 𝑤 ‘ 𝑧 )  =   0  )  →  ( 𝑠  <  𝑥  →  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =   0  ) ) ) | 
						
							| 74 | 65 66 73 | syl2anc | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( ∀ 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) ∀ 𝑧  ∈  ℕ0 ( 𝑠  <  𝑧  →  ( 𝑤 ‘ 𝑧 )  =   0  )  →  ( 𝑠  <  𝑥  →  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =   0  ) ) ) | 
						
							| 75 | 74 | ex | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  →  ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ∀ 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) ∀ 𝑧  ∈  ℕ0 ( 𝑠  <  𝑧  →  ( 𝑤 ‘ 𝑧 )  =   0  )  →  ( 𝑠  <  𝑥  →  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =   0  ) ) ) ) | 
						
							| 76 | 75 | com23 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑥  ∈  ℕ0 )  →  ( ∀ 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) ∀ 𝑧  ∈  ℕ0 ( 𝑠  <  𝑧  →  ( 𝑤 ‘ 𝑧 )  =   0  )  →  ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑠  <  𝑥  →  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =   0  ) ) ) ) | 
						
							| 77 | 76 | impancom | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) ∀ 𝑧  ∈  ℕ0 ( 𝑠  <  𝑧  →  ( 𝑤 ‘ 𝑧 )  =   0  ) )  →  ( 𝑥  ∈  ℕ0  →  ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑠  <  𝑥  →  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =   0  ) ) ) ) | 
						
							| 78 | 77 | imp | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) ∀ 𝑧  ∈  ℕ0 ( 𝑠  <  𝑧  →  ( 𝑤 ‘ 𝑧 )  =   0  ) )  ∧  𝑥  ∈  ℕ0 )  →  ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑠  <  𝑥  →  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =   0  ) ) ) | 
						
							| 79 | 78 | com23 | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) ∀ 𝑧  ∈  ℕ0 ( 𝑠  <  𝑧  →  ( 𝑤 ‘ 𝑧 )  =   0  ) )  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑠  <  𝑥  →  ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =   0  ) ) ) | 
						
							| 80 | 79 | ralrimdvv | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) ∀ 𝑧  ∈  ℕ0 ( 𝑠  <  𝑧  →  ( 𝑤 ‘ 𝑧 )  =   0  ) )  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑠  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =   0  ) ) | 
						
							| 81 | 80 | ralrimiva | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) ∀ 𝑧  ∈  ℕ0 ( 𝑠  <  𝑧  →  ( 𝑤 ‘ 𝑧 )  =   0  ) )  →  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =   0  ) ) | 
						
							| 82 | 81 | ex | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  →  ( ∀ 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) ∀ 𝑧  ∈  ℕ0 ( 𝑠  <  𝑧  →  ( 𝑤 ‘ 𝑧 )  =   0  )  →  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =   0  ) ) ) | 
						
							| 83 | 82 | reximdva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ∃ 𝑠  ∈  ℕ0 ∀ 𝑤  ∈  ( ∪  𝑢  ∈  ( 𝑁  ×  𝑁 ) { ( coe1 ‘ ( 𝑀 ‘ 𝑢 ) ) }  ∩  { 𝑣  ∈  ( ( Base ‘ 𝑅 )  ↑m  ℕ0 )  ∣  𝑣  finSupp   0  } ) ∀ 𝑧  ∈  ℕ0 ( 𝑠  <  𝑧  →  ( 𝑤 ‘ 𝑧 )  =   0  )  →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =   0  ) ) ) | 
						
							| 84 | 32 83 | mpd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =   0  ) ) |