| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coe1sfi.a |
⊢ 𝐴 = ( coe1 ‘ 𝐹 ) |
| 2 |
|
coe1sfi.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 3 |
|
coe1sfi.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 4 |
|
coe1sfi.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 5 |
|
coe1fvalcl.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
| 6 |
|
breq1 |
⊢ ( 𝑔 = 𝐴 → ( 𝑔 finSupp 0 ↔ 𝐴 finSupp 0 ) ) |
| 7 |
1 2 3 5
|
coe1f |
⊢ ( 𝐹 ∈ 𝐵 → 𝐴 : ℕ0 ⟶ 𝐾 ) |
| 8 |
5
|
fvexi |
⊢ 𝐾 ∈ V |
| 9 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 10 |
8 9
|
pm3.2i |
⊢ ( 𝐾 ∈ V ∧ ℕ0 ∈ V ) |
| 11 |
|
elmapg |
⊢ ( ( 𝐾 ∈ V ∧ ℕ0 ∈ V ) → ( 𝐴 ∈ ( 𝐾 ↑m ℕ0 ) ↔ 𝐴 : ℕ0 ⟶ 𝐾 ) ) |
| 12 |
10 11
|
mp1i |
⊢ ( 𝐹 ∈ 𝐵 → ( 𝐴 ∈ ( 𝐾 ↑m ℕ0 ) ↔ 𝐴 : ℕ0 ⟶ 𝐾 ) ) |
| 13 |
7 12
|
mpbird |
⊢ ( 𝐹 ∈ 𝐵 → 𝐴 ∈ ( 𝐾 ↑m ℕ0 ) ) |
| 14 |
1 2 3 4
|
coe1sfi |
⊢ ( 𝐹 ∈ 𝐵 → 𝐴 finSupp 0 ) |
| 15 |
6 13 14
|
elrabd |
⊢ ( 𝐹 ∈ 𝐵 → 𝐴 ∈ { 𝑔 ∈ ( 𝐾 ↑m ℕ0 ) ∣ 𝑔 finSupp 0 } ) |