Metamath Proof Explorer


Theorem coe1fsupp

Description: The coefficient vector of a univariate polynomial is a finitely supported mapping from the nonnegative integers to the elements of the coefficient class/ring for the polynomial. (Contributed by AV, 3-Oct-2019)

Ref Expression
Hypotheses coe1sfi.a 𝐴 = ( coe1𝐹 )
coe1sfi.b 𝐵 = ( Base ‘ 𝑃 )
coe1sfi.p 𝑃 = ( Poly1𝑅 )
coe1sfi.z 0 = ( 0g𝑅 )
coe1fvalcl.k 𝐾 = ( Base ‘ 𝑅 )
Assertion coe1fsupp ( 𝐹𝐵𝐴 ∈ { 𝑔 ∈ ( 𝐾m0 ) ∣ 𝑔 finSupp 0 } )

Proof

Step Hyp Ref Expression
1 coe1sfi.a 𝐴 = ( coe1𝐹 )
2 coe1sfi.b 𝐵 = ( Base ‘ 𝑃 )
3 coe1sfi.p 𝑃 = ( Poly1𝑅 )
4 coe1sfi.z 0 = ( 0g𝑅 )
5 coe1fvalcl.k 𝐾 = ( Base ‘ 𝑅 )
6 breq1 ( 𝑔 = 𝐴 → ( 𝑔 finSupp 0𝐴 finSupp 0 ) )
7 1 2 3 5 coe1f ( 𝐹𝐵𝐴 : ℕ0𝐾 )
8 5 fvexi 𝐾 ∈ V
9 nn0ex 0 ∈ V
10 8 9 pm3.2i ( 𝐾 ∈ V ∧ ℕ0 ∈ V )
11 elmapg ( ( 𝐾 ∈ V ∧ ℕ0 ∈ V ) → ( 𝐴 ∈ ( 𝐾m0 ) ↔ 𝐴 : ℕ0𝐾 ) )
12 10 11 mp1i ( 𝐹𝐵 → ( 𝐴 ∈ ( 𝐾m0 ) ↔ 𝐴 : ℕ0𝐾 ) )
13 7 12 mpbird ( 𝐹𝐵𝐴 ∈ ( 𝐾m0 ) )
14 1 2 3 4 coe1sfi ( 𝐹𝐵𝐴 finSupp 0 )
15 6 13 14 elrabd ( 𝐹𝐵𝐴 ∈ { 𝑔 ∈ ( 𝐾m0 ) ∣ 𝑔 finSupp 0 } )