| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1pmatscmul.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | 1pmatscmul.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | 1pmatscmul.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 4 |  | 1pmatscmul.e | ⊢ 𝐸  =  ( Base ‘ 𝑃 ) | 
						
							| 5 |  | 1pmatscmul.m | ⊢  ∗   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 6 |  | 1pmatscmul.1 | ⊢  1   =  ( 1r ‘ 𝐶 ) | 
						
							| 7 | 1 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 8 | 7 | anim2i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring ) ) | 
						
							| 9 | 8 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑄  ∈  𝐸 )  →  ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring ) ) | 
						
							| 10 |  | simp3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑄  ∈  𝐸 )  →  𝑄  ∈  𝐸 ) | 
						
							| 11 | 1 2 | pmatring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐶  ∈  Ring ) | 
						
							| 12 | 11 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑄  ∈  𝐸 )  →  𝐶  ∈  Ring ) | 
						
							| 13 | 3 6 | ringidcl | ⊢ ( 𝐶  ∈  Ring  →   1   ∈  𝐵 ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑄  ∈  𝐸 )  →   1   ∈  𝐵 ) | 
						
							| 15 | 4 2 3 5 | matvscl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring )  ∧  ( 𝑄  ∈  𝐸  ∧   1   ∈  𝐵 ) )  →  ( 𝑄  ∗   1  )  ∈  𝐵 ) | 
						
							| 16 | 9 10 14 15 | syl12anc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑄  ∈  𝐸 )  →  ( 𝑄  ∗   1  )  ∈  𝐵 ) |