| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsuppmapnn0fiubex | ⊢ ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  →  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  →  ∃ 𝑚  ∈  ℕ0 ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 𝑚 ) ) ) | 
						
							| 2 |  | ssel2 | ⊢ ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑓  ∈  𝑀 )  →  𝑓  ∈  ( 𝑅  ↑m  ℕ0 ) ) | 
						
							| 3 | 2 | ancoms | ⊢ ( ( 𝑓  ∈  𝑀  ∧  𝑀  ⊆  ( 𝑅  ↑m  ℕ0 ) )  →  𝑓  ∈  ( 𝑅  ↑m  ℕ0 ) ) | 
						
							| 4 |  | elmapfn | ⊢ ( 𝑓  ∈  ( 𝑅  ↑m  ℕ0 )  →  𝑓  Fn  ℕ0 ) | 
						
							| 5 | 3 4 | syl | ⊢ ( ( 𝑓  ∈  𝑀  ∧  𝑀  ⊆  ( 𝑅  ↑m  ℕ0 ) )  →  𝑓  Fn  ℕ0 ) | 
						
							| 6 | 5 | expcom | ⊢ ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  →  ( 𝑓  ∈  𝑀  →  𝑓  Fn  ℕ0 ) ) | 
						
							| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  →  ( 𝑓  ∈  𝑀  →  𝑓  Fn  ℕ0 ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  𝑚  ∈  ℕ0 )  →  ( 𝑓  ∈  𝑀  →  𝑓  Fn  ℕ0 ) ) | 
						
							| 9 | 8 | imp | ⊢ ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑓  ∈  𝑀 )  →  𝑓  Fn  ℕ0 ) | 
						
							| 10 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 11 | 10 | a1i | ⊢ ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑓  ∈  𝑀 )  →  ℕ0  ∈  V ) | 
						
							| 12 |  | simpll3 | ⊢ ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑓  ∈  𝑀 )  →  𝑍  ∈  𝑉 ) | 
						
							| 13 |  | suppvalfn | ⊢ ( ( 𝑓  Fn  ℕ0  ∧  ℕ0  ∈  V  ∧  𝑍  ∈  𝑉 )  →  ( 𝑓  supp  𝑍 )  =  { 𝑥  ∈  ℕ0  ∣  ( 𝑓 ‘ 𝑥 )  ≠  𝑍 } ) | 
						
							| 14 | 9 11 12 13 | syl3anc | ⊢ ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑓  ∈  𝑀 )  →  ( 𝑓  supp  𝑍 )  =  { 𝑥  ∈  ℕ0  ∣  ( 𝑓 ‘ 𝑥 )  ≠  𝑍 } ) | 
						
							| 15 | 14 | sseq1d | ⊢ ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑓  ∈  𝑀 )  →  ( ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 𝑚 )  ↔  { 𝑥  ∈  ℕ0  ∣  ( 𝑓 ‘ 𝑥 )  ≠  𝑍 }  ⊆  ( 0 ... 𝑚 ) ) ) | 
						
							| 16 |  | rabss | ⊢ ( { 𝑥  ∈  ℕ0  ∣  ( 𝑓 ‘ 𝑥 )  ≠  𝑍 }  ⊆  ( 0 ... 𝑚 )  ↔  ∀ 𝑥  ∈  ℕ0 ( ( 𝑓 ‘ 𝑥 )  ≠  𝑍  →  𝑥  ∈  ( 0 ... 𝑚 ) ) ) | 
						
							| 17 | 15 16 | bitrdi | ⊢ ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑓  ∈  𝑀 )  →  ( ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 𝑚 )  ↔  ∀ 𝑥  ∈  ℕ0 ( ( 𝑓 ‘ 𝑥 )  ≠  𝑍  →  𝑥  ∈  ( 0 ... 𝑚 ) ) ) ) | 
						
							| 18 |  | nne | ⊢ ( ¬  ( 𝑓 ‘ 𝑥 )  ≠  𝑍  ↔  ( 𝑓 ‘ 𝑥 )  =  𝑍 ) | 
						
							| 19 | 18 | biimpi | ⊢ ( ¬  ( 𝑓 ‘ 𝑥 )  ≠  𝑍  →  ( 𝑓 ‘ 𝑥 )  =  𝑍 ) | 
						
							| 20 | 19 | 2a1d | ⊢ ( ¬  ( 𝑓 ‘ 𝑥 )  ≠  𝑍  →  ( ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑓  ∈  𝑀 )  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑚  <  𝑥  →  ( 𝑓 ‘ 𝑥 )  =  𝑍 ) ) ) | 
						
							| 21 |  | elfz2nn0 | ⊢ ( 𝑥  ∈  ( 0 ... 𝑚 )  ↔  ( 𝑥  ∈  ℕ0  ∧  𝑚  ∈  ℕ0  ∧  𝑥  ≤  𝑚 ) ) | 
						
							| 22 |  | nn0re | ⊢ ( 𝑥  ∈  ℕ0  →  𝑥  ∈  ℝ ) | 
						
							| 23 |  | nn0re | ⊢ ( 𝑚  ∈  ℕ0  →  𝑚  ∈  ℝ ) | 
						
							| 24 |  | lenlt | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑚  ∈  ℝ )  →  ( 𝑥  ≤  𝑚  ↔  ¬  𝑚  <  𝑥 ) ) | 
						
							| 25 | 22 23 24 | syl2an | ⊢ ( ( 𝑥  ∈  ℕ0  ∧  𝑚  ∈  ℕ0 )  →  ( 𝑥  ≤  𝑚  ↔  ¬  𝑚  <  𝑥 ) ) | 
						
							| 26 |  | pm2.21 | ⊢ ( ¬  𝑚  <  𝑥  →  ( 𝑚  <  𝑥  →  ( 𝑓 ‘ 𝑥 )  =  𝑍 ) ) | 
						
							| 27 | 25 26 | biimtrdi | ⊢ ( ( 𝑥  ∈  ℕ0  ∧  𝑚  ∈  ℕ0 )  →  ( 𝑥  ≤  𝑚  →  ( 𝑚  <  𝑥  →  ( 𝑓 ‘ 𝑥 )  =  𝑍 ) ) ) | 
						
							| 28 | 27 | 3impia | ⊢ ( ( 𝑥  ∈  ℕ0  ∧  𝑚  ∈  ℕ0  ∧  𝑥  ≤  𝑚 )  →  ( 𝑚  <  𝑥  →  ( 𝑓 ‘ 𝑥 )  =  𝑍 ) ) | 
						
							| 29 | 28 | a1d | ⊢ ( ( 𝑥  ∈  ℕ0  ∧  𝑚  ∈  ℕ0  ∧  𝑥  ≤  𝑚 )  →  ( ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑓  ∈  𝑀 )  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑚  <  𝑥  →  ( 𝑓 ‘ 𝑥 )  =  𝑍 ) ) ) | 
						
							| 30 | 21 29 | sylbi | ⊢ ( 𝑥  ∈  ( 0 ... 𝑚 )  →  ( ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑓  ∈  𝑀 )  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑚  <  𝑥  →  ( 𝑓 ‘ 𝑥 )  =  𝑍 ) ) ) | 
						
							| 31 | 20 30 | ja | ⊢ ( ( ( 𝑓 ‘ 𝑥 )  ≠  𝑍  →  𝑥  ∈  ( 0 ... 𝑚 ) )  →  ( ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑓  ∈  𝑀 )  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑚  <  𝑥  →  ( 𝑓 ‘ 𝑥 )  =  𝑍 ) ) ) | 
						
							| 32 | 31 | com12 | ⊢ ( ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑓  ∈  𝑀 )  ∧  𝑥  ∈  ℕ0 )  →  ( ( ( 𝑓 ‘ 𝑥 )  ≠  𝑍  →  𝑥  ∈  ( 0 ... 𝑚 ) )  →  ( 𝑚  <  𝑥  →  ( 𝑓 ‘ 𝑥 )  =  𝑍 ) ) ) | 
						
							| 33 | 32 | ralimdva | ⊢ ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑓  ∈  𝑀 )  →  ( ∀ 𝑥  ∈  ℕ0 ( ( 𝑓 ‘ 𝑥 )  ≠  𝑍  →  𝑥  ∈  ( 0 ... 𝑚 ) )  →  ∀ 𝑥  ∈  ℕ0 ( 𝑚  <  𝑥  →  ( 𝑓 ‘ 𝑥 )  =  𝑍 ) ) ) | 
						
							| 34 | 17 33 | sylbid | ⊢ ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  𝑚  ∈  ℕ0 )  ∧  𝑓  ∈  𝑀 )  →  ( ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 𝑚 )  →  ∀ 𝑥  ∈  ℕ0 ( 𝑚  <  𝑥  →  ( 𝑓 ‘ 𝑥 )  =  𝑍 ) ) ) | 
						
							| 35 | 34 | ralimdva | ⊢ ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  𝑚  ∈  ℕ0 )  →  ( ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 𝑚 )  →  ∀ 𝑓  ∈  𝑀 ∀ 𝑥  ∈  ℕ0 ( 𝑚  <  𝑥  →  ( 𝑓 ‘ 𝑥 )  =  𝑍 ) ) ) | 
						
							| 36 | 35 | reximdva | ⊢ ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  →  ( ∃ 𝑚  ∈  ℕ0 ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 𝑚 )  →  ∃ 𝑚  ∈  ℕ0 ∀ 𝑓  ∈  𝑀 ∀ 𝑥  ∈  ℕ0 ( 𝑚  <  𝑥  →  ( 𝑓 ‘ 𝑥 )  =  𝑍 ) ) ) | 
						
							| 37 | 1 36 | syld | ⊢ ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  →  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  →  ∃ 𝑚  ∈  ℕ0 ∀ 𝑓  ∈  𝑀 ∀ 𝑥  ∈  ℕ0 ( 𝑚  <  𝑥  →  ( 𝑓 ‘ 𝑥 )  =  𝑍 ) ) ) |