| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsuppmapnn0fiubex |
⊢ ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) → ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 → ∃ 𝑚 ∈ ℕ0 ∀ 𝑓 ∈ 𝑀 ( 𝑓 supp 𝑍 ) ⊆ ( 0 ... 𝑚 ) ) ) |
| 2 |
|
ssel2 |
⊢ ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑓 ∈ 𝑀 ) → 𝑓 ∈ ( 𝑅 ↑m ℕ0 ) ) |
| 3 |
2
|
ancoms |
⊢ ( ( 𝑓 ∈ 𝑀 ∧ 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ) → 𝑓 ∈ ( 𝑅 ↑m ℕ0 ) ) |
| 4 |
|
elmapfn |
⊢ ( 𝑓 ∈ ( 𝑅 ↑m ℕ0 ) → 𝑓 Fn ℕ0 ) |
| 5 |
3 4
|
syl |
⊢ ( ( 𝑓 ∈ 𝑀 ∧ 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ) → 𝑓 Fn ℕ0 ) |
| 6 |
5
|
expcom |
⊢ ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) → ( 𝑓 ∈ 𝑀 → 𝑓 Fn ℕ0 ) ) |
| 7 |
6
|
3ad2ant1 |
⊢ ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) → ( 𝑓 ∈ 𝑀 → 𝑓 Fn ℕ0 ) ) |
| 8 |
7
|
adantr |
⊢ ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝑓 ∈ 𝑀 → 𝑓 Fn ℕ0 ) ) |
| 9 |
8
|
imp |
⊢ ( ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑓 ∈ 𝑀 ) → 𝑓 Fn ℕ0 ) |
| 10 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 11 |
10
|
a1i |
⊢ ( ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑓 ∈ 𝑀 ) → ℕ0 ∈ V ) |
| 12 |
|
simpll3 |
⊢ ( ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑓 ∈ 𝑀 ) → 𝑍 ∈ 𝑉 ) |
| 13 |
|
suppvalfn |
⊢ ( ( 𝑓 Fn ℕ0 ∧ ℕ0 ∈ V ∧ 𝑍 ∈ 𝑉 ) → ( 𝑓 supp 𝑍 ) = { 𝑥 ∈ ℕ0 ∣ ( 𝑓 ‘ 𝑥 ) ≠ 𝑍 } ) |
| 14 |
9 11 12 13
|
syl3anc |
⊢ ( ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑓 ∈ 𝑀 ) → ( 𝑓 supp 𝑍 ) = { 𝑥 ∈ ℕ0 ∣ ( 𝑓 ‘ 𝑥 ) ≠ 𝑍 } ) |
| 15 |
14
|
sseq1d |
⊢ ( ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑓 ∈ 𝑀 ) → ( ( 𝑓 supp 𝑍 ) ⊆ ( 0 ... 𝑚 ) ↔ { 𝑥 ∈ ℕ0 ∣ ( 𝑓 ‘ 𝑥 ) ≠ 𝑍 } ⊆ ( 0 ... 𝑚 ) ) ) |
| 16 |
|
rabss |
⊢ ( { 𝑥 ∈ ℕ0 ∣ ( 𝑓 ‘ 𝑥 ) ≠ 𝑍 } ⊆ ( 0 ... 𝑚 ) ↔ ∀ 𝑥 ∈ ℕ0 ( ( 𝑓 ‘ 𝑥 ) ≠ 𝑍 → 𝑥 ∈ ( 0 ... 𝑚 ) ) ) |
| 17 |
15 16
|
bitrdi |
⊢ ( ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑓 ∈ 𝑀 ) → ( ( 𝑓 supp 𝑍 ) ⊆ ( 0 ... 𝑚 ) ↔ ∀ 𝑥 ∈ ℕ0 ( ( 𝑓 ‘ 𝑥 ) ≠ 𝑍 → 𝑥 ∈ ( 0 ... 𝑚 ) ) ) ) |
| 18 |
|
nne |
⊢ ( ¬ ( 𝑓 ‘ 𝑥 ) ≠ 𝑍 ↔ ( 𝑓 ‘ 𝑥 ) = 𝑍 ) |
| 19 |
18
|
biimpi |
⊢ ( ¬ ( 𝑓 ‘ 𝑥 ) ≠ 𝑍 → ( 𝑓 ‘ 𝑥 ) = 𝑍 ) |
| 20 |
19
|
2a1d |
⊢ ( ¬ ( 𝑓 ‘ 𝑥 ) ≠ 𝑍 → ( ( ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑓 ∈ 𝑀 ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝑚 < 𝑥 → ( 𝑓 ‘ 𝑥 ) = 𝑍 ) ) ) |
| 21 |
|
elfz2nn0 |
⊢ ( 𝑥 ∈ ( 0 ... 𝑚 ) ↔ ( 𝑥 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑥 ≤ 𝑚 ) ) |
| 22 |
|
nn0re |
⊢ ( 𝑥 ∈ ℕ0 → 𝑥 ∈ ℝ ) |
| 23 |
|
nn0re |
⊢ ( 𝑚 ∈ ℕ0 → 𝑚 ∈ ℝ ) |
| 24 |
|
lenlt |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ ) → ( 𝑥 ≤ 𝑚 ↔ ¬ 𝑚 < 𝑥 ) ) |
| 25 |
22 23 24
|
syl2an |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑥 ≤ 𝑚 ↔ ¬ 𝑚 < 𝑥 ) ) |
| 26 |
|
pm2.21 |
⊢ ( ¬ 𝑚 < 𝑥 → ( 𝑚 < 𝑥 → ( 𝑓 ‘ 𝑥 ) = 𝑍 ) ) |
| 27 |
25 26
|
biimtrdi |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑥 ≤ 𝑚 → ( 𝑚 < 𝑥 → ( 𝑓 ‘ 𝑥 ) = 𝑍 ) ) ) |
| 28 |
27
|
3impia |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑥 ≤ 𝑚 ) → ( 𝑚 < 𝑥 → ( 𝑓 ‘ 𝑥 ) = 𝑍 ) ) |
| 29 |
28
|
a1d |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑥 ≤ 𝑚 ) → ( ( ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑓 ∈ 𝑀 ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝑚 < 𝑥 → ( 𝑓 ‘ 𝑥 ) = 𝑍 ) ) ) |
| 30 |
21 29
|
sylbi |
⊢ ( 𝑥 ∈ ( 0 ... 𝑚 ) → ( ( ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑓 ∈ 𝑀 ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝑚 < 𝑥 → ( 𝑓 ‘ 𝑥 ) = 𝑍 ) ) ) |
| 31 |
20 30
|
ja |
⊢ ( ( ( 𝑓 ‘ 𝑥 ) ≠ 𝑍 → 𝑥 ∈ ( 0 ... 𝑚 ) ) → ( ( ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑓 ∈ 𝑀 ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝑚 < 𝑥 → ( 𝑓 ‘ 𝑥 ) = 𝑍 ) ) ) |
| 32 |
31
|
com12 |
⊢ ( ( ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑓 ∈ 𝑀 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( ( 𝑓 ‘ 𝑥 ) ≠ 𝑍 → 𝑥 ∈ ( 0 ... 𝑚 ) ) → ( 𝑚 < 𝑥 → ( 𝑓 ‘ 𝑥 ) = 𝑍 ) ) ) |
| 33 |
32
|
ralimdva |
⊢ ( ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑓 ∈ 𝑀 ) → ( ∀ 𝑥 ∈ ℕ0 ( ( 𝑓 ‘ 𝑥 ) ≠ 𝑍 → 𝑥 ∈ ( 0 ... 𝑚 ) ) → ∀ 𝑥 ∈ ℕ0 ( 𝑚 < 𝑥 → ( 𝑓 ‘ 𝑥 ) = 𝑍 ) ) ) |
| 34 |
17 33
|
sylbid |
⊢ ( ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑓 ∈ 𝑀 ) → ( ( 𝑓 supp 𝑍 ) ⊆ ( 0 ... 𝑚 ) → ∀ 𝑥 ∈ ℕ0 ( 𝑚 < 𝑥 → ( 𝑓 ‘ 𝑥 ) = 𝑍 ) ) ) |
| 35 |
34
|
ralimdva |
⊢ ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ 𝑚 ∈ ℕ0 ) → ( ∀ 𝑓 ∈ 𝑀 ( 𝑓 supp 𝑍 ) ⊆ ( 0 ... 𝑚 ) → ∀ 𝑓 ∈ 𝑀 ∀ 𝑥 ∈ ℕ0 ( 𝑚 < 𝑥 → ( 𝑓 ‘ 𝑥 ) = 𝑍 ) ) ) |
| 36 |
35
|
reximdva |
⊢ ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) → ( ∃ 𝑚 ∈ ℕ0 ∀ 𝑓 ∈ 𝑀 ( 𝑓 supp 𝑍 ) ⊆ ( 0 ... 𝑚 ) → ∃ 𝑚 ∈ ℕ0 ∀ 𝑓 ∈ 𝑀 ∀ 𝑥 ∈ ℕ0 ( 𝑚 < 𝑥 → ( 𝑓 ‘ 𝑥 ) = 𝑍 ) ) ) |
| 37 |
1 36
|
syld |
⊢ ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) → ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 → ∃ 𝑚 ∈ ℕ0 ∀ 𝑓 ∈ 𝑀 ∀ 𝑥 ∈ ℕ0 ( 𝑚 < 𝑥 → ( 𝑓 ‘ 𝑥 ) = 𝑍 ) ) ) |