| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 2 | 1 | a1i | ⊢ ( ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  →  0  ∈  ℕ0 ) | 
						
							| 3 |  | oveq2 | ⊢ ( 𝑚  =  0  →  ( 0 ... 𝑚 )  =  ( 0 ... 0 ) ) | 
						
							| 4 | 3 | sseq2d | ⊢ ( 𝑚  =  0  →  ( ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 𝑚 )  ↔  ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 0 ) ) ) | 
						
							| 5 | 4 | ralbidv | ⊢ ( 𝑚  =  0  →  ( ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 𝑚 )  ↔  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 0 ) ) ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ∧  𝑚  =  0 )  →  ( ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 𝑚 )  ↔  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 0 ) ) ) | 
						
							| 7 |  | ral0 | ⊢ ∀ 𝑓  ∈  ∅ ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 0 ) | 
						
							| 8 |  | raleq | ⊢ ( ∅  =  𝑀  →  ( ∀ 𝑓  ∈  ∅ ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 0 )  ↔  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 0 ) ) ) | 
						
							| 9 | 7 8 | mpbii | ⊢ ( ∅  =  𝑀  →  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 0 ) ) | 
						
							| 10 |  | 0ss | ⊢ ∅  ⊆  ( 0 ... 0 ) | 
						
							| 11 |  | sseq1 | ⊢ ( ( 𝑓  supp  𝑍 )  =  ∅  →  ( ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 0 )  ↔  ∅  ⊆  ( 0 ... 0 ) ) ) | 
						
							| 12 | 10 11 | mpbiri | ⊢ ( ( 𝑓  supp  𝑍 )  =  ∅  →  ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 0 ) ) | 
						
							| 13 | 12 | ralimi | ⊢ ( ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅  →  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 0 ) ) | 
						
							| 14 | 9 13 | jaoi | ⊢ ( ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  →  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 0 ) ) | 
						
							| 15 | 2 6 14 | rspcedvd | ⊢ ( ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  →  ∃ 𝑚  ∈  ℕ0 ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 𝑚 ) ) | 
						
							| 16 | 15 | 2a1d | ⊢ ( ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  →  ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  →  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  →  ∃ 𝑚  ∈  ℕ0 ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 𝑚 ) ) ) ) | 
						
							| 17 |  | simplr | ⊢ ( ( ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ∧  ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 ) )  ∧  ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍 )  →  ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 ) ) | 
						
							| 18 |  | simpr | ⊢ ( ( ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ∧  ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 ) )  ∧  ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍 )  →  ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍 ) | 
						
							| 19 |  | ioran | ⊢ ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ↔  ( ¬  ∅  =  𝑀  ∧  ¬  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ ) ) | 
						
							| 20 |  | oveq1 | ⊢ ( 𝑓  =  𝑔  →  ( 𝑓  supp  𝑍 )  =  ( 𝑔  supp  𝑍 ) ) | 
						
							| 21 | 20 | eqeq1d | ⊢ ( 𝑓  =  𝑔  →  ( ( 𝑓  supp  𝑍 )  =  ∅  ↔  ( 𝑔  supp  𝑍 )  =  ∅ ) ) | 
						
							| 22 | 21 | cbvralvw | ⊢ ( ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅  ↔  ∀ 𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  =  ∅ ) | 
						
							| 23 | 22 | notbii | ⊢ ( ¬  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅  ↔  ¬  ∀ 𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  =  ∅ ) | 
						
							| 24 | 23 | anbi2i | ⊢ ( ( ¬  ∅  =  𝑀  ∧  ¬  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ↔  ( ¬  ∅  =  𝑀  ∧  ¬  ∀ 𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  =  ∅ ) ) | 
						
							| 25 | 19 24 | bitri | ⊢ ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ↔  ( ¬  ∅  =  𝑀  ∧  ¬  ∀ 𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  =  ∅ ) ) | 
						
							| 26 |  | rexnal | ⊢ ( ∃ 𝑔  ∈  𝑀 ¬  ( 𝑔  supp  𝑍 )  =  ∅  ↔  ¬  ∀ 𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  =  ∅ ) | 
						
							| 27 |  | df-ne | ⊢ ( ( 𝑔  supp  𝑍 )  ≠  ∅  ↔  ¬  ( 𝑔  supp  𝑍 )  =  ∅ ) | 
						
							| 28 | 27 | bicomi | ⊢ ( ¬  ( 𝑔  supp  𝑍 )  =  ∅  ↔  ( 𝑔  supp  𝑍 )  ≠  ∅ ) | 
						
							| 29 | 28 | rexbii | ⊢ ( ∃ 𝑔  ∈  𝑀 ¬  ( 𝑔  supp  𝑍 )  =  ∅  ↔  ∃ 𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  ≠  ∅ ) | 
						
							| 30 | 26 29 | sylbb1 | ⊢ ( ¬  ∀ 𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  =  ∅  →  ∃ 𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  ≠  ∅ ) | 
						
							| 31 | 25 30 | simplbiim | ⊢ ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  →  ∃ 𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  ≠  ∅ ) | 
						
							| 32 | 31 | ad2antrr | ⊢ ( ( ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ∧  ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 ) )  ∧  ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍 )  →  ∃ 𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  ≠  ∅ ) | 
						
							| 33 |  | iunn0 | ⊢ ( ∃ 𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  ≠  ∅  ↔  ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  ≠  ∅ ) | 
						
							| 34 | 32 33 | sylib | ⊢ ( ( ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ∧  ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 ) )  ∧  ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍 )  →  ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  ≠  ∅ ) | 
						
							| 35 | 18 34 | jca | ⊢ ( ( ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ∧  ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 ) )  ∧  ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍 )  →  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  ≠  ∅ ) ) | 
						
							| 36 |  | oveq1 | ⊢ ( 𝑔  =  𝑓  →  ( 𝑔  supp  𝑍 )  =  ( 𝑓  supp  𝑍 ) ) | 
						
							| 37 | 36 | cbviunv | ⊢ ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  =  ∪  𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 ) | 
						
							| 38 |  | eqid | ⊢ sup ( ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 ) ,  ℝ ,   <  )  =  sup ( ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 ) ,  ℝ ,   <  ) | 
						
							| 39 | 37 38 | fsuppmapnn0fiublem | ⊢ ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  →  ( ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  ≠  ∅ )  →  sup ( ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 ) ,  ℝ ,   <  )  ∈  ℕ0 ) ) | 
						
							| 40 | 17 35 39 | sylc | ⊢ ( ( ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ∧  ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 ) )  ∧  ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍 )  →  sup ( ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 ) ,  ℝ ,   <  )  ∈  ℕ0 ) | 
						
							| 41 |  | nfv | ⊢ Ⅎ 𝑓 ∅  =  𝑀 | 
						
							| 42 |  | nfra1 | ⊢ Ⅎ 𝑓 ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ | 
						
							| 43 | 41 42 | nfor | ⊢ Ⅎ 𝑓 ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ ) | 
						
							| 44 | 43 | nfn | ⊢ Ⅎ 𝑓 ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ ) | 
						
							| 45 |  | nfv | ⊢ Ⅎ 𝑓 ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 ) | 
						
							| 46 | 44 45 | nfan | ⊢ Ⅎ 𝑓 ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ∧  ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 ) ) | 
						
							| 47 |  | nfra1 | ⊢ Ⅎ 𝑓 ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍 | 
						
							| 48 | 46 47 | nfan | ⊢ Ⅎ 𝑓 ( ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ∧  ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 ) )  ∧  ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍 ) | 
						
							| 49 |  | nfv | ⊢ Ⅎ 𝑓 𝑚  =  sup ( ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 ) ,  ℝ ,   <  ) | 
						
							| 50 | 48 49 | nfan | ⊢ Ⅎ 𝑓 ( ( ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ∧  ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 ) )  ∧  ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍 )  ∧  𝑚  =  sup ( ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 ) ,  ℝ ,   <  ) ) | 
						
							| 51 |  | oveq2 | ⊢ ( 𝑚  =  sup ( ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 ) ,  ℝ ,   <  )  →  ( 0 ... 𝑚 )  =  ( 0 ... sup ( ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 ) ,  ℝ ,   <  ) ) ) | 
						
							| 52 | 51 | sseq2d | ⊢ ( 𝑚  =  sup ( ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 ) ,  ℝ ,   <  )  →  ( ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 𝑚 )  ↔  ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... sup ( ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 ) ,  ℝ ,   <  ) ) ) ) | 
						
							| 53 | 52 | adantl | ⊢ ( ( ( ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ∧  ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 ) )  ∧  ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍 )  ∧  𝑚  =  sup ( ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 ) ,  ℝ ,   <  ) )  →  ( ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 𝑚 )  ↔  ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... sup ( ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 ) ,  ℝ ,   <  ) ) ) ) | 
						
							| 54 | 50 53 | ralbid | ⊢ ( ( ( ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ∧  ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 ) )  ∧  ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍 )  ∧  𝑚  =  sup ( ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 ) ,  ℝ ,   <  ) )  →  ( ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 𝑚 )  ↔  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... sup ( ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 ) ,  ℝ ,   <  ) ) ) ) | 
						
							| 55 |  | rexnal | ⊢ ( ∃ 𝑓  ∈  𝑀 ¬  ( 𝑓  supp  𝑍 )  =  ∅  ↔  ¬  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ ) | 
						
							| 56 |  | df-ne | ⊢ ( ( 𝑓  supp  𝑍 )  ≠  ∅  ↔  ¬  ( 𝑓  supp  𝑍 )  =  ∅ ) | 
						
							| 57 | 56 | bicomi | ⊢ ( ¬  ( 𝑓  supp  𝑍 )  =  ∅  ↔  ( 𝑓  supp  𝑍 )  ≠  ∅ ) | 
						
							| 58 | 57 | rexbii | ⊢ ( ∃ 𝑓  ∈  𝑀 ¬  ( 𝑓  supp  𝑍 )  =  ∅  ↔  ∃ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ≠  ∅ ) | 
						
							| 59 | 55 58 | sylbb1 | ⊢ ( ¬  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅  →  ∃ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ≠  ∅ ) | 
						
							| 60 | 19 59 | simplbiim | ⊢ ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  →  ∃ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ≠  ∅ ) | 
						
							| 61 | 60 | ad2antrr | ⊢ ( ( ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ∧  ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 ) )  ∧  ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍 )  →  ∃ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ≠  ∅ ) | 
						
							| 62 |  | iunn0 | ⊢ ( ∃ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ≠  ∅  ↔  ∪  𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ≠  ∅ ) | 
						
							| 63 | 20 | cbviunv | ⊢ ∪  𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 ) | 
						
							| 64 | 63 | neeq1i | ⊢ ( ∪  𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ≠  ∅  ↔  ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  ≠  ∅ ) | 
						
							| 65 | 62 64 | bitri | ⊢ ( ∃ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ≠  ∅  ↔  ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  ≠  ∅ ) | 
						
							| 66 | 61 65 | sylib | ⊢ ( ( ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ∧  ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 ) )  ∧  ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍 )  →  ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  ≠  ∅ ) | 
						
							| 67 | 18 66 | jca | ⊢ ( ( ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ∧  ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 ) )  ∧  ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍 )  →  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  ≠  ∅ ) ) | 
						
							| 68 | 37 38 | fsuppmapnn0fiub | ⊢ ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  →  ( ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 )  ≠  ∅ )  →  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... sup ( ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 ) ,  ℝ ,   <  ) ) ) ) | 
						
							| 69 | 17 67 68 | sylc | ⊢ ( ( ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ∧  ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 ) )  ∧  ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍 )  →  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... sup ( ∪  𝑔  ∈  𝑀 ( 𝑔  supp  𝑍 ) ,  ℝ ,   <  ) ) ) | 
						
							| 70 | 40 54 69 | rspcedvd | ⊢ ( ( ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  ∧  ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 ) )  ∧  ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍 )  →  ∃ 𝑚  ∈  ℕ0 ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 𝑚 ) ) | 
						
							| 71 | 70 | exp31 | ⊢ ( ¬  ( ∅  =  𝑀  ∨  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  =  ∅ )  →  ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  →  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  →  ∃ 𝑚  ∈  ℕ0 ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 𝑚 ) ) ) ) | 
						
							| 72 | 16 71 | pm2.61i | ⊢ ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  →  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  →  ∃ 𝑚  ∈  ℕ0 ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 𝑚 ) ) ) |