| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsuppmapnn0fiub.u |
⊢ 𝑈 = ∪ 𝑓 ∈ 𝑀 ( 𝑓 supp 𝑍 ) |
| 2 |
|
fsuppmapnn0fiub.s |
⊢ 𝑆 = sup ( 𝑈 , ℝ , < ) |
| 3 |
|
nfv |
⊢ Ⅎ 𝑓 ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) |
| 4 |
|
nfra1 |
⊢ Ⅎ 𝑓 ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 |
| 5 |
|
nfv |
⊢ Ⅎ 𝑓 𝑈 ≠ ∅ |
| 6 |
4 5
|
nfan |
⊢ Ⅎ 𝑓 ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) |
| 7 |
3 6
|
nfan |
⊢ Ⅎ 𝑓 ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) |
| 8 |
|
suppssdm |
⊢ ( 𝑓 supp 𝑍 ) ⊆ dom 𝑓 |
| 9 |
|
ssel2 |
⊢ ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑓 ∈ 𝑀 ) → 𝑓 ∈ ( 𝑅 ↑m ℕ0 ) ) |
| 10 |
|
elmapfn |
⊢ ( 𝑓 ∈ ( 𝑅 ↑m ℕ0 ) → 𝑓 Fn ℕ0 ) |
| 11 |
|
fndm |
⊢ ( 𝑓 Fn ℕ0 → dom 𝑓 = ℕ0 ) |
| 12 |
|
eqimss |
⊢ ( dom 𝑓 = ℕ0 → dom 𝑓 ⊆ ℕ0 ) |
| 13 |
9 10 11 12
|
4syl |
⊢ ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑓 ∈ 𝑀 ) → dom 𝑓 ⊆ ℕ0 ) |
| 14 |
13
|
3ad2antl1 |
⊢ ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ 𝑓 ∈ 𝑀 ) → dom 𝑓 ⊆ ℕ0 ) |
| 15 |
8 14
|
sstrid |
⊢ ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ 𝑓 ∈ 𝑀 ) → ( 𝑓 supp 𝑍 ) ⊆ ℕ0 ) |
| 16 |
15
|
sseld |
⊢ ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ 𝑓 ∈ 𝑀 ) → ( 𝑥 ∈ ( 𝑓 supp 𝑍 ) → 𝑥 ∈ ℕ0 ) ) |
| 17 |
16
|
adantlr |
⊢ ( ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) ∧ 𝑓 ∈ 𝑀 ) → ( 𝑥 ∈ ( 𝑓 supp 𝑍 ) → 𝑥 ∈ ℕ0 ) ) |
| 18 |
17
|
imp |
⊢ ( ( ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) ∧ 𝑓 ∈ 𝑀 ) ∧ 𝑥 ∈ ( 𝑓 supp 𝑍 ) ) → 𝑥 ∈ ℕ0 ) |
| 19 |
1 2
|
fsuppmapnn0fiublem |
⊢ ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) → ( ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) → 𝑆 ∈ ℕ0 ) ) |
| 20 |
19
|
imp |
⊢ ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) → 𝑆 ∈ ℕ0 ) |
| 21 |
20
|
ad2antrr |
⊢ ( ( ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) ∧ 𝑓 ∈ 𝑀 ) ∧ 𝑥 ∈ ( 𝑓 supp 𝑍 ) ) → 𝑆 ∈ ℕ0 ) |
| 22 |
9 10 11
|
3syl |
⊢ ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑓 ∈ 𝑀 ) → dom 𝑓 = ℕ0 ) |
| 23 |
22
|
ex |
⊢ ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) → ( 𝑓 ∈ 𝑀 → dom 𝑓 = ℕ0 ) ) |
| 24 |
23
|
3ad2ant1 |
⊢ ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) → ( 𝑓 ∈ 𝑀 → dom 𝑓 = ℕ0 ) ) |
| 25 |
24
|
adantr |
⊢ ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) → ( 𝑓 ∈ 𝑀 → dom 𝑓 = ℕ0 ) ) |
| 26 |
25
|
imp |
⊢ ( ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) ∧ 𝑓 ∈ 𝑀 ) → dom 𝑓 = ℕ0 ) |
| 27 |
|
nn0ssre |
⊢ ℕ0 ⊆ ℝ |
| 28 |
26 27
|
eqsstrdi |
⊢ ( ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) ∧ 𝑓 ∈ 𝑀 ) → dom 𝑓 ⊆ ℝ ) |
| 29 |
8 28
|
sstrid |
⊢ ( ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) ∧ 𝑓 ∈ 𝑀 ) → ( 𝑓 supp 𝑍 ) ⊆ ℝ ) |
| 30 |
29
|
ex |
⊢ ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) → ( 𝑓 ∈ 𝑀 → ( 𝑓 supp 𝑍 ) ⊆ ℝ ) ) |
| 31 |
7 30
|
ralrimi |
⊢ ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) → ∀ 𝑓 ∈ 𝑀 ( 𝑓 supp 𝑍 ) ⊆ ℝ ) |
| 32 |
31
|
ad2antrr |
⊢ ( ( ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) ∧ 𝑓 ∈ 𝑀 ) ∧ 𝑥 ∈ ( 𝑓 supp 𝑍 ) ) → ∀ 𝑓 ∈ 𝑀 ( 𝑓 supp 𝑍 ) ⊆ ℝ ) |
| 33 |
|
iunss |
⊢ ( ∪ 𝑓 ∈ 𝑀 ( 𝑓 supp 𝑍 ) ⊆ ℝ ↔ ∀ 𝑓 ∈ 𝑀 ( 𝑓 supp 𝑍 ) ⊆ ℝ ) |
| 34 |
32 33
|
sylibr |
⊢ ( ( ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) ∧ 𝑓 ∈ 𝑀 ) ∧ 𝑥 ∈ ( 𝑓 supp 𝑍 ) ) → ∪ 𝑓 ∈ 𝑀 ( 𝑓 supp 𝑍 ) ⊆ ℝ ) |
| 35 |
1 34
|
eqsstrid |
⊢ ( ( ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) ∧ 𝑓 ∈ 𝑀 ) ∧ 𝑥 ∈ ( 𝑓 supp 𝑍 ) ) → 𝑈 ⊆ ℝ ) |
| 36 |
|
simp2 |
⊢ ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) → 𝑀 ∈ Fin ) |
| 37 |
|
id |
⊢ ( 𝑓 finSupp 𝑍 → 𝑓 finSupp 𝑍 ) |
| 38 |
37
|
fsuppimpd |
⊢ ( 𝑓 finSupp 𝑍 → ( 𝑓 supp 𝑍 ) ∈ Fin ) |
| 39 |
38
|
ralimi |
⊢ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 → ∀ 𝑓 ∈ 𝑀 ( 𝑓 supp 𝑍 ) ∈ Fin ) |
| 40 |
39
|
adantr |
⊢ ( ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) → ∀ 𝑓 ∈ 𝑀 ( 𝑓 supp 𝑍 ) ∈ Fin ) |
| 41 |
36 40
|
anim12i |
⊢ ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) → ( 𝑀 ∈ Fin ∧ ∀ 𝑓 ∈ 𝑀 ( 𝑓 supp 𝑍 ) ∈ Fin ) ) |
| 42 |
41
|
ad2antrr |
⊢ ( ( ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) ∧ 𝑓 ∈ 𝑀 ) ∧ 𝑥 ∈ ( 𝑓 supp 𝑍 ) ) → ( 𝑀 ∈ Fin ∧ ∀ 𝑓 ∈ 𝑀 ( 𝑓 supp 𝑍 ) ∈ Fin ) ) |
| 43 |
|
iunfi |
⊢ ( ( 𝑀 ∈ Fin ∧ ∀ 𝑓 ∈ 𝑀 ( 𝑓 supp 𝑍 ) ∈ Fin ) → ∪ 𝑓 ∈ 𝑀 ( 𝑓 supp 𝑍 ) ∈ Fin ) |
| 44 |
42 43
|
syl |
⊢ ( ( ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) ∧ 𝑓 ∈ 𝑀 ) ∧ 𝑥 ∈ ( 𝑓 supp 𝑍 ) ) → ∪ 𝑓 ∈ 𝑀 ( 𝑓 supp 𝑍 ) ∈ Fin ) |
| 45 |
1 44
|
eqeltrid |
⊢ ( ( ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) ∧ 𝑓 ∈ 𝑀 ) ∧ 𝑥 ∈ ( 𝑓 supp 𝑍 ) ) → 𝑈 ∈ Fin ) |
| 46 |
|
rspe |
⊢ ( ( 𝑓 ∈ 𝑀 ∧ 𝑥 ∈ ( 𝑓 supp 𝑍 ) ) → ∃ 𝑓 ∈ 𝑀 𝑥 ∈ ( 𝑓 supp 𝑍 ) ) |
| 47 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑓 ∈ 𝑀 ( 𝑓 supp 𝑍 ) ↔ ∃ 𝑓 ∈ 𝑀 𝑥 ∈ ( 𝑓 supp 𝑍 ) ) |
| 48 |
46 47
|
sylibr |
⊢ ( ( 𝑓 ∈ 𝑀 ∧ 𝑥 ∈ ( 𝑓 supp 𝑍 ) ) → 𝑥 ∈ ∪ 𝑓 ∈ 𝑀 ( 𝑓 supp 𝑍 ) ) |
| 49 |
48 1
|
eleqtrrdi |
⊢ ( ( 𝑓 ∈ 𝑀 ∧ 𝑥 ∈ ( 𝑓 supp 𝑍 ) ) → 𝑥 ∈ 𝑈 ) |
| 50 |
49
|
adantll |
⊢ ( ( ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) ∧ 𝑓 ∈ 𝑀 ) ∧ 𝑥 ∈ ( 𝑓 supp 𝑍 ) ) → 𝑥 ∈ 𝑈 ) |
| 51 |
2
|
a1i |
⊢ ( ( ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) ∧ 𝑓 ∈ 𝑀 ) ∧ 𝑥 ∈ ( 𝑓 supp 𝑍 ) ) → 𝑆 = sup ( 𝑈 , ℝ , < ) ) |
| 52 |
35 45 50 51
|
supfirege |
⊢ ( ( ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) ∧ 𝑓 ∈ 𝑀 ) ∧ 𝑥 ∈ ( 𝑓 supp 𝑍 ) ) → 𝑥 ≤ 𝑆 ) |
| 53 |
|
elfz2nn0 |
⊢ ( 𝑥 ∈ ( 0 ... 𝑆 ) ↔ ( 𝑥 ∈ ℕ0 ∧ 𝑆 ∈ ℕ0 ∧ 𝑥 ≤ 𝑆 ) ) |
| 54 |
18 21 52 53
|
syl3anbrc |
⊢ ( ( ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) ∧ 𝑓 ∈ 𝑀 ) ∧ 𝑥 ∈ ( 𝑓 supp 𝑍 ) ) → 𝑥 ∈ ( 0 ... 𝑆 ) ) |
| 55 |
54
|
ex |
⊢ ( ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) ∧ 𝑓 ∈ 𝑀 ) → ( 𝑥 ∈ ( 𝑓 supp 𝑍 ) → 𝑥 ∈ ( 0 ... 𝑆 ) ) ) |
| 56 |
55
|
ssrdv |
⊢ ( ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) ∧ 𝑓 ∈ 𝑀 ) → ( 𝑓 supp 𝑍 ) ⊆ ( 0 ... 𝑆 ) ) |
| 57 |
56
|
ex |
⊢ ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) → ( 𝑓 ∈ 𝑀 → ( 𝑓 supp 𝑍 ) ⊆ ( 0 ... 𝑆 ) ) ) |
| 58 |
7 57
|
ralrimi |
⊢ ( ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) ∧ ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) ) → ∀ 𝑓 ∈ 𝑀 ( 𝑓 supp 𝑍 ) ⊆ ( 0 ... 𝑆 ) ) |
| 59 |
58
|
ex |
⊢ ( ( 𝑀 ⊆ ( 𝑅 ↑m ℕ0 ) ∧ 𝑀 ∈ Fin ∧ 𝑍 ∈ 𝑉 ) → ( ( ∀ 𝑓 ∈ 𝑀 𝑓 finSupp 𝑍 ∧ 𝑈 ≠ ∅ ) → ∀ 𝑓 ∈ 𝑀 ( 𝑓 supp 𝑍 ) ⊆ ( 0 ... 𝑆 ) ) ) |