| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsuppmapnn0fiub.u | ⊢ 𝑈  =  ∪  𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 ) | 
						
							| 2 |  | fsuppmapnn0fiub.s | ⊢ 𝑆  =  sup ( 𝑈 ,  ℝ ,   <  ) | 
						
							| 3 |  | nfv | ⊢ Ⅎ 𝑓 ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 ) | 
						
							| 4 |  | nfra1 | ⊢ Ⅎ 𝑓 ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍 | 
						
							| 5 |  | nfv | ⊢ Ⅎ 𝑓 𝑈  ≠  ∅ | 
						
							| 6 | 4 5 | nfan | ⊢ Ⅎ 𝑓 ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) | 
						
							| 7 | 3 6 | nfan | ⊢ Ⅎ 𝑓 ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) ) | 
						
							| 8 |  | suppssdm | ⊢ ( 𝑓  supp  𝑍 )  ⊆  dom  𝑓 | 
						
							| 9 |  | ssel2 | ⊢ ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑓  ∈  𝑀 )  →  𝑓  ∈  ( 𝑅  ↑m  ℕ0 ) ) | 
						
							| 10 |  | elmapfn | ⊢ ( 𝑓  ∈  ( 𝑅  ↑m  ℕ0 )  →  𝑓  Fn  ℕ0 ) | 
						
							| 11 |  | fndm | ⊢ ( 𝑓  Fn  ℕ0  →  dom  𝑓  =  ℕ0 ) | 
						
							| 12 |  | eqimss | ⊢ ( dom  𝑓  =  ℕ0  →  dom  𝑓  ⊆  ℕ0 ) | 
						
							| 13 | 9 10 11 12 | 4syl | ⊢ ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑓  ∈  𝑀 )  →  dom  𝑓  ⊆  ℕ0 ) | 
						
							| 14 | 13 | 3ad2antl1 | ⊢ ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  𝑓  ∈  𝑀 )  →  dom  𝑓  ⊆  ℕ0 ) | 
						
							| 15 | 8 14 | sstrid | ⊢ ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  𝑓  ∈  𝑀 )  →  ( 𝑓  supp  𝑍 )  ⊆  ℕ0 ) | 
						
							| 16 | 15 | sseld | ⊢ ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  𝑓  ∈  𝑀 )  →  ( 𝑥  ∈  ( 𝑓  supp  𝑍 )  →  𝑥  ∈  ℕ0 ) ) | 
						
							| 17 | 16 | adantlr | ⊢ ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  →  ( 𝑥  ∈  ( 𝑓  supp  𝑍 )  →  𝑥  ∈  ℕ0 ) ) | 
						
							| 18 | 17 | imp | ⊢ ( ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  ∧  𝑥  ∈  ( 𝑓  supp  𝑍 ) )  →  𝑥  ∈  ℕ0 ) | 
						
							| 19 | 1 2 | fsuppmapnn0fiublem | ⊢ ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  →  ( ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ )  →  𝑆  ∈  ℕ0 ) ) | 
						
							| 20 | 19 | imp | ⊢ ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  →  𝑆  ∈  ℕ0 ) | 
						
							| 21 | 20 | ad2antrr | ⊢ ( ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  ∧  𝑥  ∈  ( 𝑓  supp  𝑍 ) )  →  𝑆  ∈  ℕ0 ) | 
						
							| 22 | 9 10 11 | 3syl | ⊢ ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑓  ∈  𝑀 )  →  dom  𝑓  =  ℕ0 ) | 
						
							| 23 | 22 | ex | ⊢ ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  →  ( 𝑓  ∈  𝑀  →  dom  𝑓  =  ℕ0 ) ) | 
						
							| 24 | 23 | 3ad2ant1 | ⊢ ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  →  ( 𝑓  ∈  𝑀  →  dom  𝑓  =  ℕ0 ) ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  →  ( 𝑓  ∈  𝑀  →  dom  𝑓  =  ℕ0 ) ) | 
						
							| 26 | 25 | imp | ⊢ ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  →  dom  𝑓  =  ℕ0 ) | 
						
							| 27 |  | nn0ssre | ⊢ ℕ0  ⊆  ℝ | 
						
							| 28 | 26 27 | eqsstrdi | ⊢ ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  →  dom  𝑓  ⊆  ℝ ) | 
						
							| 29 | 8 28 | sstrid | ⊢ ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  →  ( 𝑓  supp  𝑍 )  ⊆  ℝ ) | 
						
							| 30 | 29 | ex | ⊢ ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  →  ( 𝑓  ∈  𝑀  →  ( 𝑓  supp  𝑍 )  ⊆  ℝ ) ) | 
						
							| 31 | 7 30 | ralrimi | ⊢ ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  →  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ℝ ) | 
						
							| 32 | 31 | ad2antrr | ⊢ ( ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  ∧  𝑥  ∈  ( 𝑓  supp  𝑍 ) )  →  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ℝ ) | 
						
							| 33 |  | iunss | ⊢ ( ∪  𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ℝ  ↔  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ℝ ) | 
						
							| 34 | 32 33 | sylibr | ⊢ ( ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  ∧  𝑥  ∈  ( 𝑓  supp  𝑍 ) )  →  ∪  𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ℝ ) | 
						
							| 35 | 1 34 | eqsstrid | ⊢ ( ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  ∧  𝑥  ∈  ( 𝑓  supp  𝑍 ) )  →  𝑈  ⊆  ℝ ) | 
						
							| 36 |  | simp2 | ⊢ ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  →  𝑀  ∈  Fin ) | 
						
							| 37 |  | id | ⊢ ( 𝑓  finSupp  𝑍  →  𝑓  finSupp  𝑍 ) | 
						
							| 38 | 37 | fsuppimpd | ⊢ ( 𝑓  finSupp  𝑍  →  ( 𝑓  supp  𝑍 )  ∈  Fin ) | 
						
							| 39 | 38 | ralimi | ⊢ ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  →  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ∈  Fin ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ )  →  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ∈  Fin ) | 
						
							| 41 | 36 40 | anim12i | ⊢ ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  →  ( 𝑀  ∈  Fin  ∧  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ∈  Fin ) ) | 
						
							| 42 | 41 | ad2antrr | ⊢ ( ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  ∧  𝑥  ∈  ( 𝑓  supp  𝑍 ) )  →  ( 𝑀  ∈  Fin  ∧  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ∈  Fin ) ) | 
						
							| 43 |  | iunfi | ⊢ ( ( 𝑀  ∈  Fin  ∧  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ∈  Fin )  →  ∪  𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ∈  Fin ) | 
						
							| 44 | 42 43 | syl | ⊢ ( ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  ∧  𝑥  ∈  ( 𝑓  supp  𝑍 ) )  →  ∪  𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ∈  Fin ) | 
						
							| 45 | 1 44 | eqeltrid | ⊢ ( ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  ∧  𝑥  ∈  ( 𝑓  supp  𝑍 ) )  →  𝑈  ∈  Fin ) | 
						
							| 46 |  | rspe | ⊢ ( ( 𝑓  ∈  𝑀  ∧  𝑥  ∈  ( 𝑓  supp  𝑍 ) )  →  ∃ 𝑓  ∈  𝑀 𝑥  ∈  ( 𝑓  supp  𝑍 ) ) | 
						
							| 47 |  | eliun | ⊢ ( 𝑥  ∈  ∪  𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ↔  ∃ 𝑓  ∈  𝑀 𝑥  ∈  ( 𝑓  supp  𝑍 ) ) | 
						
							| 48 | 46 47 | sylibr | ⊢ ( ( 𝑓  ∈  𝑀  ∧  𝑥  ∈  ( 𝑓  supp  𝑍 ) )  →  𝑥  ∈  ∪  𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 ) ) | 
						
							| 49 | 48 1 | eleqtrrdi | ⊢ ( ( 𝑓  ∈  𝑀  ∧  𝑥  ∈  ( 𝑓  supp  𝑍 ) )  →  𝑥  ∈  𝑈 ) | 
						
							| 50 | 49 | adantll | ⊢ ( ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  ∧  𝑥  ∈  ( 𝑓  supp  𝑍 ) )  →  𝑥  ∈  𝑈 ) | 
						
							| 51 | 2 | a1i | ⊢ ( ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  ∧  𝑥  ∈  ( 𝑓  supp  𝑍 ) )  →  𝑆  =  sup ( 𝑈 ,  ℝ ,   <  ) ) | 
						
							| 52 | 35 45 50 51 | supfirege | ⊢ ( ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  ∧  𝑥  ∈  ( 𝑓  supp  𝑍 ) )  →  𝑥  ≤  𝑆 ) | 
						
							| 53 |  | elfz2nn0 | ⊢ ( 𝑥  ∈  ( 0 ... 𝑆 )  ↔  ( 𝑥  ∈  ℕ0  ∧  𝑆  ∈  ℕ0  ∧  𝑥  ≤  𝑆 ) ) | 
						
							| 54 | 18 21 52 53 | syl3anbrc | ⊢ ( ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  ∧  𝑥  ∈  ( 𝑓  supp  𝑍 ) )  →  𝑥  ∈  ( 0 ... 𝑆 ) ) | 
						
							| 55 | 54 | ex | ⊢ ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  →  ( 𝑥  ∈  ( 𝑓  supp  𝑍 )  →  𝑥  ∈  ( 0 ... 𝑆 ) ) ) | 
						
							| 56 | 55 | ssrdv | ⊢ ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  →  ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 𝑆 ) ) | 
						
							| 57 | 56 | ex | ⊢ ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  →  ( 𝑓  ∈  𝑀  →  ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 𝑆 ) ) ) | 
						
							| 58 | 7 57 | ralrimi | ⊢ ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  →  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 𝑆 ) ) | 
						
							| 59 | 58 | ex | ⊢ ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  →  ( ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ )  →  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ( 0 ... 𝑆 ) ) ) |