| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsuppmapnn0fiub.u | ⊢ 𝑈  =  ∪  𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 ) | 
						
							| 2 |  | fsuppmapnn0fiub.s | ⊢ 𝑆  =  sup ( 𝑈 ,  ℝ ,   <  ) | 
						
							| 3 |  | nfv | ⊢ Ⅎ 𝑓 ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 ) | 
						
							| 4 |  | nfra1 | ⊢ Ⅎ 𝑓 ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍 | 
						
							| 5 |  | nfv | ⊢ Ⅎ 𝑓 𝑈  ≠  ∅ | 
						
							| 6 | 4 5 | nfan | ⊢ Ⅎ 𝑓 ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) | 
						
							| 7 | 3 6 | nfan | ⊢ Ⅎ 𝑓 ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) ) | 
						
							| 8 |  | suppssdm | ⊢ ( 𝑓  supp  𝑍 )  ⊆  dom  𝑓 | 
						
							| 9 |  | ssel2 | ⊢ ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑓  ∈  𝑀 )  →  𝑓  ∈  ( 𝑅  ↑m  ℕ0 ) ) | 
						
							| 10 |  | elmapfn | ⊢ ( 𝑓  ∈  ( 𝑅  ↑m  ℕ0 )  →  𝑓  Fn  ℕ0 ) | 
						
							| 11 |  | fndm | ⊢ ( 𝑓  Fn  ℕ0  →  dom  𝑓  =  ℕ0 ) | 
						
							| 12 |  | eqimss | ⊢ ( dom  𝑓  =  ℕ0  →  dom  𝑓  ⊆  ℕ0 ) | 
						
							| 13 | 9 10 11 12 | 4syl | ⊢ ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑓  ∈  𝑀 )  →  dom  𝑓  ⊆  ℕ0 ) | 
						
							| 14 | 13 | ex | ⊢ ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  →  ( 𝑓  ∈  𝑀  →  dom  𝑓  ⊆  ℕ0 ) ) | 
						
							| 15 | 14 | 3ad2ant1 | ⊢ ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  →  ( 𝑓  ∈  𝑀  →  dom  𝑓  ⊆  ℕ0 ) ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  →  ( 𝑓  ∈  𝑀  →  dom  𝑓  ⊆  ℕ0 ) ) | 
						
							| 17 | 16 | imp | ⊢ ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  →  dom  𝑓  ⊆  ℕ0 ) | 
						
							| 18 | 8 17 | sstrid | ⊢ ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  →  ( 𝑓  supp  𝑍 )  ⊆  ℕ0 ) | 
						
							| 19 | 18 | ex | ⊢ ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  →  ( 𝑓  ∈  𝑀  →  ( 𝑓  supp  𝑍 )  ⊆  ℕ0 ) ) | 
						
							| 20 | 7 19 | ralrimi | ⊢ ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  →  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ℕ0 ) | 
						
							| 21 |  | iunss | ⊢ ( ∪  𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ℕ0  ↔  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ℕ0 ) | 
						
							| 22 | 20 21 | sylibr | ⊢ ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  →  ∪  𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ℕ0 ) | 
						
							| 23 | 1 22 | eqsstrid | ⊢ ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  →  𝑈  ⊆  ℕ0 ) | 
						
							| 24 |  | ltso | ⊢  <   Or  ℝ | 
						
							| 25 | 24 | a1i | ⊢ ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  →   <   Or  ℝ ) | 
						
							| 26 |  | simp2 | ⊢ ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  →  𝑀  ∈  Fin ) | 
						
							| 27 |  | id | ⊢ ( 𝑓  finSupp  𝑍  →  𝑓  finSupp  𝑍 ) | 
						
							| 28 | 27 | fsuppimpd | ⊢ ( 𝑓  finSupp  𝑍  →  ( 𝑓  supp  𝑍 )  ∈  Fin ) | 
						
							| 29 | 28 | ralimi | ⊢ ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  →  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ∈  Fin ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ )  →  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ∈  Fin ) | 
						
							| 31 |  | iunfi | ⊢ ( ( 𝑀  ∈  Fin  ∧  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ∈  Fin )  →  ∪  𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ∈  Fin ) | 
						
							| 32 | 26 30 31 | syl2an | ⊢ ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  →  ∪  𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ∈  Fin ) | 
						
							| 33 | 1 32 | eqeltrid | ⊢ ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  →  𝑈  ∈  Fin ) | 
						
							| 34 |  | simprr | ⊢ ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  →  𝑈  ≠  ∅ ) | 
						
							| 35 | 9 10 11 | 3syl | ⊢ ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑓  ∈  𝑀 )  →  dom  𝑓  =  ℕ0 ) | 
						
							| 36 | 35 | ex | ⊢ ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  →  ( 𝑓  ∈  𝑀  →  dom  𝑓  =  ℕ0 ) ) | 
						
							| 37 | 36 | 3ad2ant1 | ⊢ ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  →  ( 𝑓  ∈  𝑀  →  dom  𝑓  =  ℕ0 ) ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  →  ( 𝑓  ∈  𝑀  →  dom  𝑓  =  ℕ0 ) ) | 
						
							| 39 | 38 | imp | ⊢ ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  →  dom  𝑓  =  ℕ0 ) | 
						
							| 40 |  | nn0ssre | ⊢ ℕ0  ⊆  ℝ | 
						
							| 41 | 39 40 | eqsstrdi | ⊢ ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  →  dom  𝑓  ⊆  ℝ ) | 
						
							| 42 | 8 41 | sstrid | ⊢ ( ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  ∧  𝑓  ∈  𝑀 )  →  ( 𝑓  supp  𝑍 )  ⊆  ℝ ) | 
						
							| 43 | 42 | ex | ⊢ ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  →  ( 𝑓  ∈  𝑀  →  ( 𝑓  supp  𝑍 )  ⊆  ℝ ) ) | 
						
							| 44 | 7 43 | ralrimi | ⊢ ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  →  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ℝ ) | 
						
							| 45 | 1 | sseq1i | ⊢ ( 𝑈  ⊆  ℝ  ↔  ∪  𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ℝ ) | 
						
							| 46 |  | iunss | ⊢ ( ∪  𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ℝ  ↔  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ℝ ) | 
						
							| 47 | 45 46 | bitri | ⊢ ( 𝑈  ⊆  ℝ  ↔  ∀ 𝑓  ∈  𝑀 ( 𝑓  supp  𝑍 )  ⊆  ℝ ) | 
						
							| 48 | 44 47 | sylibr | ⊢ ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  →  𝑈  ⊆  ℝ ) | 
						
							| 49 |  | fisupcl | ⊢ ( (  <   Or  ℝ  ∧  ( 𝑈  ∈  Fin  ∧  𝑈  ≠  ∅  ∧  𝑈  ⊆  ℝ ) )  →  sup ( 𝑈 ,  ℝ ,   <  )  ∈  𝑈 ) | 
						
							| 50 | 2 49 | eqeltrid | ⊢ ( (  <   Or  ℝ  ∧  ( 𝑈  ∈  Fin  ∧  𝑈  ≠  ∅  ∧  𝑈  ⊆  ℝ ) )  →  𝑆  ∈  𝑈 ) | 
						
							| 51 | 25 33 34 48 50 | syl13anc | ⊢ ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  →  𝑆  ∈  𝑈 ) | 
						
							| 52 | 23 51 | sseldd | ⊢ ( ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  ∧  ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ ) )  →  𝑆  ∈  ℕ0 ) | 
						
							| 53 | 52 | ex | ⊢ ( ( 𝑀  ⊆  ( 𝑅  ↑m  ℕ0 )  ∧  𝑀  ∈  Fin  ∧  𝑍  ∈  𝑉 )  →  ( ( ∀ 𝑓  ∈  𝑀 𝑓  finSupp  𝑍  ∧  𝑈  ≠  ∅ )  →  𝑆  ∈  ℕ0 ) ) |