| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsuppmapnn0fiub.u |  |-  U = U_ f e. M ( f supp Z ) | 
						
							| 2 |  | fsuppmapnn0fiub.s |  |-  S = sup ( U , RR , < ) | 
						
							| 3 |  | nfv |  |-  F/ f ( M C_ ( R ^m NN0 ) /\ M e. Fin /\ Z e. V ) | 
						
							| 4 |  | nfra1 |  |-  F/ f A. f e. M f finSupp Z | 
						
							| 5 |  | nfv |  |-  F/ f U =/= (/) | 
						
							| 6 | 4 5 | nfan |  |-  F/ f ( A. f e. M f finSupp Z /\ U =/= (/) ) | 
						
							| 7 | 3 6 | nfan |  |-  F/ f ( ( M C_ ( R ^m NN0 ) /\ M e. Fin /\ Z e. V ) /\ ( A. f e. M f finSupp Z /\ U =/= (/) ) ) | 
						
							| 8 |  | suppssdm |  |-  ( f supp Z ) C_ dom f | 
						
							| 9 |  | ssel2 |  |-  ( ( M C_ ( R ^m NN0 ) /\ f e. M ) -> f e. ( R ^m NN0 ) ) | 
						
							| 10 |  | elmapfn |  |-  ( f e. ( R ^m NN0 ) -> f Fn NN0 ) | 
						
							| 11 |  | fndm |  |-  ( f Fn NN0 -> dom f = NN0 ) | 
						
							| 12 |  | eqimss |  |-  ( dom f = NN0 -> dom f C_ NN0 ) | 
						
							| 13 | 9 10 11 12 | 4syl |  |-  ( ( M C_ ( R ^m NN0 ) /\ f e. M ) -> dom f C_ NN0 ) | 
						
							| 14 | 13 | ex |  |-  ( M C_ ( R ^m NN0 ) -> ( f e. M -> dom f C_ NN0 ) ) | 
						
							| 15 | 14 | 3ad2ant1 |  |-  ( ( M C_ ( R ^m NN0 ) /\ M e. Fin /\ Z e. V ) -> ( f e. M -> dom f C_ NN0 ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ( M C_ ( R ^m NN0 ) /\ M e. Fin /\ Z e. V ) /\ ( A. f e. M f finSupp Z /\ U =/= (/) ) ) -> ( f e. M -> dom f C_ NN0 ) ) | 
						
							| 17 | 16 | imp |  |-  ( ( ( ( M C_ ( R ^m NN0 ) /\ M e. Fin /\ Z e. V ) /\ ( A. f e. M f finSupp Z /\ U =/= (/) ) ) /\ f e. M ) -> dom f C_ NN0 ) | 
						
							| 18 | 8 17 | sstrid |  |-  ( ( ( ( M C_ ( R ^m NN0 ) /\ M e. Fin /\ Z e. V ) /\ ( A. f e. M f finSupp Z /\ U =/= (/) ) ) /\ f e. M ) -> ( f supp Z ) C_ NN0 ) | 
						
							| 19 | 18 | ex |  |-  ( ( ( M C_ ( R ^m NN0 ) /\ M e. Fin /\ Z e. V ) /\ ( A. f e. M f finSupp Z /\ U =/= (/) ) ) -> ( f e. M -> ( f supp Z ) C_ NN0 ) ) | 
						
							| 20 | 7 19 | ralrimi |  |-  ( ( ( M C_ ( R ^m NN0 ) /\ M e. Fin /\ Z e. V ) /\ ( A. f e. M f finSupp Z /\ U =/= (/) ) ) -> A. f e. M ( f supp Z ) C_ NN0 ) | 
						
							| 21 |  | iunss |  |-  ( U_ f e. M ( f supp Z ) C_ NN0 <-> A. f e. M ( f supp Z ) C_ NN0 ) | 
						
							| 22 | 20 21 | sylibr |  |-  ( ( ( M C_ ( R ^m NN0 ) /\ M e. Fin /\ Z e. V ) /\ ( A. f e. M f finSupp Z /\ U =/= (/) ) ) -> U_ f e. M ( f supp Z ) C_ NN0 ) | 
						
							| 23 | 1 22 | eqsstrid |  |-  ( ( ( M C_ ( R ^m NN0 ) /\ M e. Fin /\ Z e. V ) /\ ( A. f e. M f finSupp Z /\ U =/= (/) ) ) -> U C_ NN0 ) | 
						
							| 24 |  | ltso |  |-  < Or RR | 
						
							| 25 | 24 | a1i |  |-  ( ( ( M C_ ( R ^m NN0 ) /\ M e. Fin /\ Z e. V ) /\ ( A. f e. M f finSupp Z /\ U =/= (/) ) ) -> < Or RR ) | 
						
							| 26 |  | simp2 |  |-  ( ( M C_ ( R ^m NN0 ) /\ M e. Fin /\ Z e. V ) -> M e. Fin ) | 
						
							| 27 |  | id |  |-  ( f finSupp Z -> f finSupp Z ) | 
						
							| 28 | 27 | fsuppimpd |  |-  ( f finSupp Z -> ( f supp Z ) e. Fin ) | 
						
							| 29 | 28 | ralimi |  |-  ( A. f e. M f finSupp Z -> A. f e. M ( f supp Z ) e. Fin ) | 
						
							| 30 | 29 | adantr |  |-  ( ( A. f e. M f finSupp Z /\ U =/= (/) ) -> A. f e. M ( f supp Z ) e. Fin ) | 
						
							| 31 |  | iunfi |  |-  ( ( M e. Fin /\ A. f e. M ( f supp Z ) e. Fin ) -> U_ f e. M ( f supp Z ) e. Fin ) | 
						
							| 32 | 26 30 31 | syl2an |  |-  ( ( ( M C_ ( R ^m NN0 ) /\ M e. Fin /\ Z e. V ) /\ ( A. f e. M f finSupp Z /\ U =/= (/) ) ) -> U_ f e. M ( f supp Z ) e. Fin ) | 
						
							| 33 | 1 32 | eqeltrid |  |-  ( ( ( M C_ ( R ^m NN0 ) /\ M e. Fin /\ Z e. V ) /\ ( A. f e. M f finSupp Z /\ U =/= (/) ) ) -> U e. Fin ) | 
						
							| 34 |  | simprr |  |-  ( ( ( M C_ ( R ^m NN0 ) /\ M e. Fin /\ Z e. V ) /\ ( A. f e. M f finSupp Z /\ U =/= (/) ) ) -> U =/= (/) ) | 
						
							| 35 | 9 10 11 | 3syl |  |-  ( ( M C_ ( R ^m NN0 ) /\ f e. M ) -> dom f = NN0 ) | 
						
							| 36 | 35 | ex |  |-  ( M C_ ( R ^m NN0 ) -> ( f e. M -> dom f = NN0 ) ) | 
						
							| 37 | 36 | 3ad2ant1 |  |-  ( ( M C_ ( R ^m NN0 ) /\ M e. Fin /\ Z e. V ) -> ( f e. M -> dom f = NN0 ) ) | 
						
							| 38 | 37 | adantr |  |-  ( ( ( M C_ ( R ^m NN0 ) /\ M e. Fin /\ Z e. V ) /\ ( A. f e. M f finSupp Z /\ U =/= (/) ) ) -> ( f e. M -> dom f = NN0 ) ) | 
						
							| 39 | 38 | imp |  |-  ( ( ( ( M C_ ( R ^m NN0 ) /\ M e. Fin /\ Z e. V ) /\ ( A. f e. M f finSupp Z /\ U =/= (/) ) ) /\ f e. M ) -> dom f = NN0 ) | 
						
							| 40 |  | nn0ssre |  |-  NN0 C_ RR | 
						
							| 41 | 39 40 | eqsstrdi |  |-  ( ( ( ( M C_ ( R ^m NN0 ) /\ M e. Fin /\ Z e. V ) /\ ( A. f e. M f finSupp Z /\ U =/= (/) ) ) /\ f e. M ) -> dom f C_ RR ) | 
						
							| 42 | 8 41 | sstrid |  |-  ( ( ( ( M C_ ( R ^m NN0 ) /\ M e. Fin /\ Z e. V ) /\ ( A. f e. M f finSupp Z /\ U =/= (/) ) ) /\ f e. M ) -> ( f supp Z ) C_ RR ) | 
						
							| 43 | 42 | ex |  |-  ( ( ( M C_ ( R ^m NN0 ) /\ M e. Fin /\ Z e. V ) /\ ( A. f e. M f finSupp Z /\ U =/= (/) ) ) -> ( f e. M -> ( f supp Z ) C_ RR ) ) | 
						
							| 44 | 7 43 | ralrimi |  |-  ( ( ( M C_ ( R ^m NN0 ) /\ M e. Fin /\ Z e. V ) /\ ( A. f e. M f finSupp Z /\ U =/= (/) ) ) -> A. f e. M ( f supp Z ) C_ RR ) | 
						
							| 45 | 1 | sseq1i |  |-  ( U C_ RR <-> U_ f e. M ( f supp Z ) C_ RR ) | 
						
							| 46 |  | iunss |  |-  ( U_ f e. M ( f supp Z ) C_ RR <-> A. f e. M ( f supp Z ) C_ RR ) | 
						
							| 47 | 45 46 | bitri |  |-  ( U C_ RR <-> A. f e. M ( f supp Z ) C_ RR ) | 
						
							| 48 | 44 47 | sylibr |  |-  ( ( ( M C_ ( R ^m NN0 ) /\ M e. Fin /\ Z e. V ) /\ ( A. f e. M f finSupp Z /\ U =/= (/) ) ) -> U C_ RR ) | 
						
							| 49 |  | fisupcl |  |-  ( ( < Or RR /\ ( U e. Fin /\ U =/= (/) /\ U C_ RR ) ) -> sup ( U , RR , < ) e. U ) | 
						
							| 50 | 2 49 | eqeltrid |  |-  ( ( < Or RR /\ ( U e. Fin /\ U =/= (/) /\ U C_ RR ) ) -> S e. U ) | 
						
							| 51 | 25 33 34 48 50 | syl13anc |  |-  ( ( ( M C_ ( R ^m NN0 ) /\ M e. Fin /\ Z e. V ) /\ ( A. f e. M f finSupp Z /\ U =/= (/) ) ) -> S e. U ) | 
						
							| 52 | 23 51 | sseldd |  |-  ( ( ( M C_ ( R ^m NN0 ) /\ M e. Fin /\ Z e. V ) /\ ( A. f e. M f finSupp Z /\ U =/= (/) ) ) -> S e. NN0 ) | 
						
							| 53 | 52 | ex |  |-  ( ( M C_ ( R ^m NN0 ) /\ M e. Fin /\ Z e. V ) -> ( ( A. f e. M f finSupp Z /\ U =/= (/) ) -> S e. NN0 ) ) |